
libquadflash API

IN THIS DOCUMENT

· General Operations

· Boot Partition Functions

· Data Partition Functions

The libquadflash library provides functions for reading and writing data to Quad-SPI flash devices
that use the xCORE format shown in the diagram below.

Figure 1: Flash format diagram

Flash
loader

Factory
image0 1 2 3

Upgrade
image

BOOT PARTITION DATA
PARTITION0

Upgrade
image

Default
0 bytes

(unavailable)

Sector boundariesHardware protected

All functions are prototyped in the header file <quadflash.h>. Except where otherwise stated,
functions return 0 on success and non-zero on failure.

1 General Operations

The program must explicitly open a connection to the Quad-SPI device before attempting to use it,
and must disconnect once finished accessing the device.

The functions fl_connect and fl_connectToDevice require an argument of type fl_QSPIPorts,
which defines the four ports and clock block used to connect to the device.

typedef struct {
out port qspiCS;
out port qspiSCLK;
out buffered port :32 qspiSIO;
clock qspiClkblk;

} fl_QSPIPorts;

Publication Date: 2016/10/31 Document Number: XM010841C

XMOS © 2016, All Rights Reserved



libquadflash API 2/8

Function fl_connect

Description fl_connect opens a connection to the specified Quad-SPI device.

Type int fl_connect(fl_QSPIPorts *SPI)

Function fl_connectToDevice

Description fl_connectToDevice opens a connection to an Quad-SPI device. It iterates
through an array of n Quad-SPI device specifications, attempting to connect
using each specification until one succeeds.

Type int
fl_connectToDevice(fl_QSPIPorts *SPI,

fl_DeviceSpec spec[],
unsigned n)

Function fl_getFlashType

Description fl_getFlashType returns an enum value for the flash device. The enumeration
of devices known to libquadflash is given below.

typedef enum {
UNKNOWN = 0,
ISSI_IS25LQ016B ,
ISSI_IS25LQ032B ,
ISSI_IS25LQ080B ,
SPANSION_S25FL116K ,
SPANSION_S25FL132K ,
SPANSION_S25FL164K ,

} fl_QuadFlashId;

If the function call fl_connectToDevice(p, spec, n) is used to connect to a
flash device, fl_getFlashType returns the parameter value spec[i].flashId
where i is the index of the connected device.

Type int fl_getFlashType(void)

Function fl_getFlashSize

Description fl_getFlashSize returns the capacity of the Quad-SPI device in bytes.

Type unsigned fl_getFlashSize(void)

XM010841C



libquadflash API 3/8

Function fl_disconnect

Description fl_disconnect closes the connection to the Quad-SPI device.

Type int fl_disconnect(void)

2 Boot Partition Functions

By default, the size of the boot partition is set to the size of the flash device. Access to boot
images is provided through an iterator interface.

Function fl_getFactoryImage

Description fl_getFactoryImage provides information about the factory boot image.

Type int
fl_getFactoryImage(fl_BootImageInfo *bootImageInfo)

Function fl_getNextBootImage

Description fl_getNextBootImage provides information about the next upgrade image.
Once located, an image can be upgraded. Functions are also provided for
reading the contents of an upgrade image.

Type int
fl_getNextBootImage(fl_BootImageInfo *bootImageInfo)

Function fl_getImageVersion

Description fl_getImageVersion returns the version number of the specified image.

Type unsigned
fl_getImageVersion(fl_BootImageInfo *bootImageInfo)

XM010841C



libquadflash API 4/8

Function fl_startImageReplace

Description fl_startImageReplace prepares the Quad-SPI device for replacing an image.
The old image can no longer be assumed to exist after this call.
Attempting to write into the data partition or the space of another upgrade
image is invalid. A non-zero return value signifies that the preparation is not
yet complete and that the function should be called again. This behavior allows
the latency of a sector erase to be masked by the program.

Type int
fl_startImageReplace(fl_BootImageInfo *, unsigned maxsize)

Function fl_startImageAdd

Description fl_startImageAdd prepares the Quad-SPI device for adding an image after the
specified image. The start of the new image is at least padding bytes after the
previous image.
Attempting to write into the data partition or the space of another upgrade
image is invalid. A non-zero return value signifies that the preparation is not
yet complete and that the function must be called again. This behavior allows
the latency of a sector erase to be masked by the program.

Type int fl_startImageAdd(fl_BootImageInfo*,
unsigned maxsize,
unsigned padding)

Function fl_startImageAddAt

Description fl_startImageAddAt prepares the Quad-SPI device for adding an image at the
specified address offset from the base of the first sector after the factory image.
Attempting to write into the data partition or the space of another upgrade
image is invalid. A non-zero return value signifies that the preparation is not
yet complete and that the function must be called again.

Type int fl_startImageAddAt(unsigned offset, unsigned maxsize)

Function fl_writeImagePage

Description fl_writeImagePage waits until the Quad-SPI device is able to accept a request
and then outputs the next page of data to the device. Attempting to write
past the maximum size passed to fl_startImageReplace, fl_startImageAdd or
fl_startImageAddAt is invalid.

Continued on next page

XM010841C



libquadflash API 5/8

Type int
fl_writeImagePage(const unsigned char page[])

Function fl_writeImageEnd

Description fl_writeImageEnd waits until the Quad-SPI device has written the last page of
data to its memory.

Type int fl_writeImageEnd(void)

Function fl_startImageRead

Description fl_startImageRead prepares the Quad-SPI device for reading the contents of
the specified upgrade image.

Type int
fl_startImageRead(fl_BootImageInfo *b)

Function fl_readImagePage

Description fl_readImagePage inputs the next page of data from the Quad-SPI device and
writes it to the array page.

Type int
fl_readImagePage(unsigned char page[])

Function fl_deleteImage

Description fl_deleteImage erases the upgrade image with the specified image.

Type int fl_deleteImage(fl_BootImageInfo* b)

3 Data Partition Functions

All flash devices are assumed to have uniform page sizes but are not assumed to have uniform
sector sizes. Read and write operations occur at the page level, and erase operations occur at
the sector level. This means that to write part of a sector, a buffer size of at least one sector is
required to preserve other data.

XM010841C



libquadflash API 6/8

In the following functions, writes to the data partition and erasures from the data partition are not
fail-safe. If the operation is interrupted, for example due to a power failure, the data in the page
or sector is undefined.

Function fl_getDataPartitionSize

Description fl_getDataPartitionSize returns the size of the data partition in bytes.

Type unsigned fl_getDataPartitionSize(void)

Function fl_readData

Description fl_readData reads a number of bytes from an offset into the data partition and
writes them to the array dst.

Type int fl_readData(unsigned offset, unsigned size, unsigned char dst[])

Function fl_getWriteScratchSize

Description fl_getWriteScratchSize returns the buffer size needed by fl_writeData for
the given parameters.

Type unsigned
fl_getWriteScratchSize(unsigned offset, unsigned size)

Function fl_writeData

Description fl_writeData writes the array src to the specified offset in the data partition.
It uses the array buffer to preserve page data that must be re-written.

Type int fl_writeData(unsigned offset,
unsigned size,
const unsigned char src[],
unsigned char buffer[])

3.1 Page-Level Functions

XM010841C



libquadflash API 7/8

Function fl_getPageSize

Description fl_getPageSize returns the page size in bytes.

Type unsigned fl_getPageSize(void)

Function fl_getNumDataPages

Description fl_getNumDataPages returns the number of pages in the data partition.

Type unsigned fl_getNumDataPages(void)

Function fl_writeDataPage

Description fl_writeDataPage writes the array data to the n-th page in the data partition.
The data array must be at least as big as the page size; if larger, the highest
elements are ignored.

Type unsigned fl_writeDataPage(unsigned n, const unsigned char data[])

Function fl_readDataPage

Description fl_readDataPage reads the n-th page in the data partition and writes it to the
array data. The size of data must be at least as large as the page size.

Type unsigned fl_readDataPage(unsigned n, unsigned char data[])

3.2 Sector-Level Functions

Function fl_getNumDataSectors

Description fl_getNumDataSectors returns the number of sectors in the data partition.

Type unsigned fl_getNumDataSectors(void)

XM010841C



libquadflash API 8/8

Function fl_getDataSectorSize

Description fl_getDataSectorSize returns the size of the n-th sector in the data partition
in bytes.

Type unsigned fl_getDataSectorSize(unsigned n)

Function fl_eraseDataSector

Description fl_eraseDataSector erases the n-th sector in the data partition.

Type unsigned fl_eraseDataSector(unsigned n)

Function fl_eraseAllDataSectors

Description fl_eraseAllDataSectors erases all sectors in the data partition.

Type unsigned fl_eraseAllDataSectors(void)

Copyright © 2016, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

XM010841C


	General Operations
	Boot Partition Functions
	Data Partition Functions

