
XTCP (6.0.0)

TCP/IP Library
A library providing two alternative TCP/UDP/IP protocol stacks for XMOS devices. This library connects to
the XMOS Ethernet library to provide layer-3 traffic over Ethernet via MII or RGMII.

Features

• TCP and UDP connection handling
• DHCP, IP4LL, ICMP, IGMP support
• Low level, event based interface for efficient memory usage
• Supports IPv4 only, not IPv6

Stacks

This library provides two different TCP/IP stack implementations ported to the xCORE architecture.

uIP stack

The first stack ported is the uIP (micro IP) stack. The uIP stack has been designed to have a minimal re-
source footprint. As a result, it has limited performance and does not provide support for TCP windowing.

lwIP stack

The second stack ported is the lwIP (lightweight IP) stack. The lwIP stack requires more resources than
uIP, but is designed to provide better throughput and also has support for TCP windowing.

Typical Resource Usage

This following table shows typical resource usage in some different configurations. Exact resource usage
will depend on the particular use of the library by the application.

Configuration Pins Ports Clocks Ram Logical cores

UIP 0 0 0 ~25.7K 1

LWIP 0 0 0 ~63.6K 1

Software version and dependencies

This document pertains to version 6.0.0 of this library. It is known to work on version 14.2.4 of the
xTIMEcomposer tools suite, it may work on other versions.

This library depends on the following other libraries:

• lib_otpinfo (>=2.0.0) • lib_ethernet (>=3.2.0)

Related application notes

The following application notes use this library:

• AN00121 - Using the XMOS TCP/IP library

Copyright 2017 XMOS Ltd. 1 www.xmos.com
XM007217



XTCP (6.0.0)

1 Usage

The TCP/IP stack runs in a task implemented in either the xtcp_uip() or xtcp_lwip() functions depending
on which stack implementation you wish to use. The interfaces to the stack are the same, regardless of
which implementation is being used.

This task connects to either the MII component in the Ethernet library or one of the MAC components in
the Ethernet library. See the Ethernet library user guide for details on these components.

Figure 1: XTCP task diagram

Clients can interact with the TCP/IP stack via interfaces connected to the component using the interface
functions described in §3.3.

If your application has no need of direct layer 2 traffic to the Ethernet MAC then the most resource efficient
approach is to connect the xtcp component directly to the MII layer component.

1.1 IP Configuration

The server will determine its IP configuration based on the xtcp_ipconfig_t configuration passed into
the xtcp_uip() / xtcp_lwip() task. If an address is supplied then that address will be used (a static IP
address configuration):

xtcp_ipconfig_t ipconfig = {
{ 192, 168, 0, 2 }, // ip address
{ 255, 255, 255, 0 }, // netmask
{ 192, 168, 0, 1 } // gateway

};

If no address is supplied then the server will first try to find a DHCP server on the network to obtain an
address automatically. If it cannot obtain an address from DHCP, it will determine a link local address (in
the range 169.254/16) automatically using the Zeroconf IPV4LL protocol.

To use dynamic address, the xtcp_uip() and xtcp_lwip() functions can be passed a structure with an IP
address that is all zeros:

Copyright 2017 XMOS Ltd. 2 www.xmos.com
XM007217



XTCP (6.0.0)

xtcp_ipconfig_t ipconfig = {
{ 0, 0, 0, 0 }, // ip address
{ 0, 0, 0, 0 }, // netmask
{ 0, 0, 0, 0 } // gateway

};

1.2 Events and Connections

The TCP/IP stack client interface is a low-level event based interface. This is to allow applications to
manage buffering and connections in the most efficient way possible for the application.

Each client will receive packet ready events from the server to indicate that the server has new data for
that client. The client then collects the packet using the get_packet() call.

The packets sent from the server can be either data or control packets. The type of packet is indicated in
the connection state event member. The possible packet types are defined in §3.1.

A client will typically handle its connection to the XTCP server in the following manner:

xtcp_connection_t conn;
char buffer[ETHERNET_MAX_PACKET_SIZE];
unsigned data_len;
select {
case i.xtcp.packet_ready():
i_xtcp.get_packet(conn, buffer, ETHERNET_MAX_PACKET_SIZE, data_len);
// Handle event
switch (conn.event) {
...

}
break;

}

The client can also call interface functions to initiate new connections, manage the connection and send
or receive data.

If the client is handling multiple connections then the server may interleave events for each connection
so the client has to hold a persistent state for each connection.

The connection and event model is the same from both TCP connections and UDP connections. Full details
of both the possible events and possible commands can be found in §3.

1.3 New Connections

New connections are made in two different ways. Either the connect() function is used to initiate a
connection with a remote host as a client or the listen() function is used to listen on a port for
other hosts to connect to the application. In either case once a connection is established then the
XTCP_NEW_CONNECTION event is received by the client.

In the Berkley sockets API, a listening UDP connection merely reports data received on the socket, inde-
pedent of the source IP address. In XTCP, a XTCP_NEW_CONNECTION event is sent each time data arrives
from a new source. The API function close() should be called after the connection is no longer needed.

1.4 TCP and UDP

The XTCP API treats UDP and TCP connections in the same way. The only difference is when the protocol
is specified on initializing connections with the interface connect() or listen() functions.

For example, an HTTP client would listen for TCP connections on port 80:

Copyright 2017 XMOS Ltd. 3 www.xmos.com
XM007217



XTCP (6.0.0)

i_xtcp.listen(80, XTCP_PROTOCOL_TCP);

A client could create a new UDP connection to port 15333 on a machine at 192.168.0.2 using:

xtcp_ipaddr_t addr = { 192, 168, 0, 2 };
i_xtcp.connect(15333, addr, XTCP_PROTOCOL_UDP);

1.5 Receiving Data

When data is received for a client the server will indicate that there is a packet ready and the
get_packet() call will indicate that the event type is XTCP_RECV_DATA and the packet data will have
been returned to the get_packet() call.

Data is sent from the XTCP server to client as the UDP or TCP packets arrive from the ethernet MAC.
There is no buffering in the server so it will wait for the client to handle the event before processing new
incoming packets.

1.6 Sending Data

When sending data, the client is responsible for dividing the data into chunks for the server and re-
transmitting the previous chunk if a transmission error occurs.

Note that re-transmission may be needed on both TCP and UDP connections. On UDP connections, the
transmission may fail if the server has not yet established a connection between the destination IP address
and layer 2 MAC address.

The client sends a packet by calling the send() interface function.

The maximum buffer size that can be sent in one call to xtcp_send is contained in the mss field of the
connection structure relating to the event.

After this data is sent to the server, two things can happen: Either the server will respond with an
XTCP_SENT_DATA event, in which case the next chunk of data can be sent. Or with an XTCP_RESEND_DATA
event in which case the client must re-transmit the previous chunk of data.

1.7 Link Status Events

As well as events related to connections. The server may also send link status events to the client. The
events XTCP_IFUP and XTCP_IFDOWN indicate to a client when the link goes up or down.

1.8 Configuration

The server is configured via arguments passed to server task (xtcp_uip()/ xtcp_lwip()) and the defines
described in Section §2.1.

Copyright 2017 XMOS Ltd. 4 www.xmos.com
XM007217



XTCP (6.0.0)

Figure 2: Example send sequence

Copyright 2017 XMOS Ltd. 5 www.xmos.com
XM007217



XTCP (6.0.0)

2 Configuration API

2.1 Configuration Defines

Configuration defines can either be set by adding the a command line option to the build flags in your
application Makefile (i.e. -DDEFINE=VALUE) or by adding the file xtcp_client_conf.h into your applica-
tion and then putting #define directives into that header file (which will then be read by the library on
build).

XTCP_CLIENT_BUF_SIZE The buffer size used for incoming packets. This has a maximum value of 1472
which can handle any incoming packet. If it is set to a smaller value, larger incoming packets will be
truncated. Default is 1472.

UIP_CONF_MAX_CONNECTIONS The maximum number of UDP or TCP connections the server can handle
simultaneously. Default is 20.

UIP_CONF_MAX_LISTENPORTS The maximum number of UDP or TCP ports the server can listen to simul-
taneously. Default is 20.

UIP_USE_AUTOIP By defining this as 0, the IPv4LL application is removed from the code. Do this to save
approxmiately 1kB. Auto IP is a stateless protocol that assigns an IP address to a device. Typically,
if a unit is trying to use DHCP to obtain an address, and a server cannot be found, then auto IP is
used to assign an address of the form 169.254.x.y. Auto IP is enabled by default

UIP_USE_DHCP By defining this as 0, the DHCP client is removed from the code. This will save approx-
imately 2kB. DHCP is a protocol for dynamically acquiring an IP address from a centralised DHCP
server. This option is enabled by default.

Copyright 2017 XMOS Ltd. 6 www.xmos.com
XM007217



XTCP (6.0.0)

3 Functional API

All functions can be found in the xtcp.h header file:

#include <xtcp.h>

The application also needs to add lib_xtcp to its build modules:

USED_MODULES = ... lib_xtcp ...

3.1 Data Structures/Types

Type xtcp_ipaddr_t

Description XTCP IP address.
This data type represents a single ipv4 address in the XTCP stack.

Type xtcp_ipconfig_t

Description IP configuration information structure.
This structure describes IP configuration for an ip node.

Fields xtcp_ipaddr_t ipaddr
The IP Address of the node.

xtcp_ipaddr_t netmask
The netmask of the node.

The mask used to determine which address are routed locally.

xtcp_ipaddr_t gateway
The gateway of the node.

Type xtcp_protocol_t

Description XTCP protocol type.
This determines what type a connection is: either UDP or TCP.

Values XTCP_PROTOCOL_TCP
Transmission Control Protocol.

XTCP_PROTOCOL_UDP
User Datagram Protocol.

Copyright 2017 XMOS Ltd. 7 www.xmos.com
XM007217



XTCP (6.0.0)

Type xtcp_event_type_t

Description XTCP event type.
The event type represents what event is occuring on a particular connection. It is
instantiated as part of the xtcp_connection_t structure in the function get_packet().

Values XTCP_NEW_CONNECTION
This event represents a new connection has been made.

In the case of a TCP server connections it occurs when a remote host
firsts makes contact with the local host. For TCP client connections it oc-
curs when a stream is setup with the remote host. For UDP connections
it occurs as soon as the connection is created.

XTCP_RECV_DATA
This event occurs when the connection has received some data.

The return_len in get_packet() will indicate the length of the data.
The data will be present in the buffer passed to get_packet().

XTCP_SENT_DATA
This event occurs when the server has successfully sent the previous
piece of data that was given to it via a call to send().

XTCP_RESEND_DATA
This event occurs when the server has failed to send the previous piece
of data that was given to it via a call to send().

The server is now requesting for the same data to be sent again.

XTCP_TIMED_OUT
This event occurs when the connection has timed out with the remote
host (TCP only).

This event represents the closing of a connection and is the last event
that will occur on an active connection.

XTCP_ABORTED
This event occurs when the connection has been aborted by the local or
remote host (TCP only).

This event represents the closing of a connection and is the last event
that will occur on an active connection.

XTCP_CLOSED
This event occurs when the connection has been closed by the local or
remote host.

This event represents the closing of a connection and is the last event
that will occur on an active connection.

Continued on next page

Copyright 2017 XMOS Ltd. 8 www.xmos.com
XM007217



XTCP (6.0.0)

XTCP_IFUP This event occurs when the link goes up (with valid new ip address).

This event has no associated connection.

XTCP_IFDOWN
This event occurs when the link goes down.

This event has no associated connection.

XTCP_DNS_RESULT
This event occurs when the XTCP connection has a DNS result for a
request.

Type xtcp_connection_t

Description This type represents a TCP or UDP connection.
This is the main type containing connection information for the client to handle. Ele-
ments of this type are instantiated by the xtcp_event() function which informs the
client about an event and the connection the event is on.

Fields int client_num
The number of the client connected.

int id A unique identifier for the connection.

xtcp_protocol_t protocol
The protocol of the connection (TCP/UDP).

xtcp_event_type_t event
The last reported event on this connection.

xtcp_appstate_t appstate
The application state associated with the connection.

This is set using the set_appstate() function.

xtcp_ipaddr_t remote_addr
The remote ip address of the connection.

unsigned int remote_port
The remote port of the connection.

unsigned int local_port
The local port of the connection.

Continued on next page

Copyright 2017 XMOS Ltd. 9 www.xmos.com
XM007217



XTCP (6.0.0)

unsigned int mss
The maximum size in bytes that can be send using xtcp_send() after
a send event.

unsigned packet_length
Length of packet recieved.

int stack_conn
Pointer to the associated uIP/LWIP connection.

Only to be used by XTCP.

Copyright 2017 XMOS Ltd. 10 www.xmos.com
XM007217



XTCP (6.0.0)

3.2 Server API

Function xtcp_uip

Description Function implementing the TCP/IP stack task using the uIP stack.
This functions implements a TCP/IP stack that clients can access via interfaces.

Type void
xtcp_uip(server xtcp_if i_xtcp[n_xtcp],

static const unsigned n_xtcp,
client mii_if ?i_mii,
client ethernet_cfg_if ?i_eth_cfg,
client ethernet_rx_if ?i_eth_rx,
client ethernet_tx_if ?i_eth_tx,
client smi_if ?i_smi,
uint8_t phy_address,
const char(& ?mac_address0)[6],
otp_ports_t & ?otp_ports,
xtcp_ipconfig_t &ipconfig)

Continued on next page

Copyright 2017 XMOS Ltd. 11 www.xmos.com
XM007217



XTCP (6.0.0)

Parameters i_xtcp The interface array to connect to the clients.

n_xtcp The number of clients to the task.

i_mii If this component is connected to the mii() component in the Ethernet
library then this interface should be used to connect to it. Otherwise it
should be set to null

i_eth_cfg If this component is connected to an MAC component in the Ethernet
library then this interface should be used to connect to it. Otherwise it
should be set to null.

i_eth_rx If this component is connected to an MAC component in the Ethernet
library then this interface should be used to connect to it. Otherwise it
should be set to null.

i_eth_tx If this component is connected to an MAC component in the Ethernet
library then this interface should be used to connect to it. Otherwise it
should be set to null.

i_smi If this connection to an Ethernet SMI component is then the XTCP com-
ponent will poll the Ethernet PHY for link up/link down events. Other-
wise, it will expect link up/link down events from the connected Ethernet
MAC.

phy_address
The SMI address of the Ethernet PHY

mac_address
If this array is non-null then it will be used to set the MAC address of
the component.

otp_ports If this port structure is non-null then the component will obtain the
MAC address from OTP ROM. See the OTP reading library user guide for
details.

ipconfig This :c:type:xtcp_ipconfig_t structure is used to determine the IP ad-
dress configuration of the component.

Function xtcp_lwip

Description Function implementing the TCP/IP stack using the lwIP stack.
This functions implements a TCP/IP stack that clients can access via interfaces.

Continued on next page

Copyright 2017 XMOS Ltd. 12 www.xmos.com
XM007217



XTCP (6.0.0)

Type void
xtcp_lwip(server xtcp_if i_xtcp[n_xtcp],

static const unsigned n_xtcp,
client mii_if ?i_mii,
client ethernet_cfg_if ?i_eth_cfg,
client ethernet_rx_if ?i_eth_rx,
client ethernet_tx_if ?i_eth_tx,
client smi_if ?i_smi,
uint8_t phy_address,
const char(& ?mac_address0)[6],
otp_ports_t & ?otp_ports,
xtcp_ipconfig_t &ipconfig)

Continued on next page

Copyright 2017 XMOS Ltd. 13 www.xmos.com
XM007217



XTCP (6.0.0)

Parameters i_xtcp The interface array to connect to the clients.

n_xtcp The number of clients to the task.

i_mii If this component is connected to the mii() component in the Ethernet
library then this interface should be used to connect to it. Otherwise it
should be set to null

i_eth_cfg If this component is connected to an MAC component in the Ethernet
library then this interface should be used to connect to it. Otherwise it
should be set to null.

i_eth_rx If this component is connected to an MAC component in the Ethernet
library then this interface should be used to connect to it. Otherwise it
should be set to null.

i_eth_tx If this component is connected to an MAC component in the Ethernet
library then this interface should be used to connect to it. Otherwise it
should be set to null.

i_smi If this connection to an Ethernet SMI component is then the XTCP com-
ponent will poll the Ethernet PHY for link up/link down events. Other-
wise, it will expect link up/link down events from the connected Ethernet
MAC.

phy_address
The SMI address of the Ethernet PHY

mac_address
If this array is non-null then it will be used to set the MAC address of
the component.

otp_ports If this port structure is non-null then the component will obtain the
MAC address from OTP ROM. See the OTP reading library user guide for
details.

ipconfig This :c:type:xtcp_ipconfig_t structure is used to determine the IP ad-
dress configuration of the component.

Copyright 2017 XMOS Ltd. 14 www.xmos.com
XM007217



XTCP (6.0.0)

3.3 Client API

Type xtcp_if

Description

Functions
Function get_packet

Description Recieve information/data from the XTCP server.
After the client is notified by packet_ready() it must call this
function to receive the packet from the server.
If the data buffer is not large enough then an exception will be
raised.

Type [[clears_notification]]
void get_packet(xtcp_connection_t &conn,

char data[n],
unsigned n,
unsigned &length)

Parameters conn The connection structure to be passed in that will
contain all the connection information.

data An array where XTCP server can write data to.
This data array must be large enough to receive
the packets being sent to the client. In most
cases it should be assumed that packets of ETH-
ERNET_MAX_PACKET_SIZE can be received.

n Size of the data array.

length An integer where the server can indicate the
length of the sent packet.

Function packet_ready

Description Notifies the client that there is data/information ready for them.
After this notification is raised a call to get_packet() is
needed.

Type [[notification]]
slave void packet_ready()

Continued on next page

Copyright 2017 XMOS Ltd. 15 www.xmos.com
XM007217



XTCP (6.0.0)

Type xtcp_if (continued)

Function listen

Description Listen to a particular incoming port.
After this call, when a connection is established an
XTCP_NEW_CONNECTION event is signalled.

Type void listen(int port_number,
xtcp_protocol_t protocol)

Parameters port_number
The local port number to listen to

protocol The protocol to connect with
(XTCP_PROTOCOL_TCP or XTCP_PROTOCOL_UDP)

Function unlisten

Description Stop listening to a particular incoming port.

Type void unlisten(unsigned port_number)

Parameters port_number
local port number to stop listening on

Function close

Description Close a connection.
May still recieve data on a TCP connection. Use abort() if you
wish to completely stop all data. Will continue to listen on the
open port the connection came from.

Type void close(const xtcp_connection_t &conn)

Parameters conn The connection structure to be passed in that will
contain all the connection information.

Continued on next page

Copyright 2017 XMOS Ltd. 16 www.xmos.com
XM007217



XTCP (6.0.0)

Type xtcp_if (continued)

Function abort

Description Abort a connection.
For UDP this is the same as closing the connection. For TCP the
server will send a RST signal and stop all incoming data.

Type void abort(const xtcp_connection_t &conn)

Parameters conn The connection structure to be passed in that will
contain all the connection information.

Function connect

Description Try to connect to a remote port.
For TCP this will initiate the three way handshake. For UDP this
will assign a random local port and bind the remote end of the
connection to the host specified.

Type void connect(unsigned port_number,
xtcp_ipaddr_t ipaddr,
xtcp_protocol_t protocol)

Parameters port_number
The remote port to try to connect to

ipaddr The ip addr of the remote host

protocol The protocol to connect with
(XTCP_PROTOCOL_TCP or XTCP_PROTOCOL_UDP)

Continued on next page

Copyright 2017 XMOS Ltd. 17 www.xmos.com
XM007217



XTCP (6.0.0)

Type xtcp_if (continued)

Function send

Description Send data to the connection.

Type void send(const xtcp_connection_t &conn,
char data[],
unsigned len)

Parameters conn The connection structure to be passed in that will
contain all the connection information.

data An array of data to send

len The length of data to send. If this is 0, no data
will be sent and a XTCP_SENT_DATA event will not
occur.

Function join_multicast_group

Description Subscribe to a particular IP multicast group address.

Type void
join_multicast_group(xtcp_ipaddr_t addr)

Parameters addr The address of the multicast group to join. It is
assumed that this is a multicast IP address.

Function leave_multicast_group

Description Unsubscribe from a particular IP multicast group address.

Type void
leave_multicast_group(xtcp_ipaddr_t addr)

Parameters addr The address of the multicast group to leave. It is
assumed that this is a multicast IP address.

Continued on next page

Copyright 2017 XMOS Ltd. 18 www.xmos.com
XM007217



XTCP (6.0.0)

Type xtcp_if (continued)

Function set_appstate

Description Set the connections application state data item.
After this call, subsequent events on this connection will have
the appstate field of the connection set.

Type void
set_appstate(const xtcp_connection_t &conn,

xtcp_appstate_t appstate)

Parameters conn The connection structure to be passed in that will
contain all the connection information.

appstate An unsigned integer representing the state. In C
this is usually a pointer to some connection de-
pendent information.

Function bind_local_udp

Description Bind the local end of a connection to a particular port (UDP).

Type void
bind_local_udp(const xtcp_connection_t &conn,

unsigned port_number)

Parameters conn The connection structure to be passed in that will
contain all the connection information.

port_number
The local port to set the connection to.

Continued on next page

Copyright 2017 XMOS Ltd. 19 www.xmos.com
XM007217



XTCP (6.0.0)

Type xtcp_if (continued)

Function bind_remote_udp

Description Bind the remote end of a connection to a particular port and ip
address (UDP).
After this call, packets sent to this connection will go to the
specified address and port

Type void
bind_remote_udp(const xtcp_connection_t &conn,

xtcp_ipaddr_t ipaddr,
unsigned port_number)

Parameters conn The connection structure to be passed in that will
contain all the connection information.

ipaddr The intended remote address of the connection

port_number
The intended remote port of the connection

Function request_host_by_name

Description Request a hosts IP address from a URL.
LWIP ONLY.

Type void
request_host_by_name(const char hostname[],

unsigned name_len)

Parameters hostname The human readable host name, e.g.
“www.xmos.com”

name_len The length of the hostname in characters

Function get_ipconfig

Description Fill the provided ipconfig address with the current state of the
server.

Type void
get_ipconfig(xtcp_ipconfig_t &ipconfig)

Parameters ipconfig IPconfig to be filled.

Copyright 2017 XMOS Ltd. 20 www.xmos.com
XM007217



XTCP (6.0.0)

APPENDIX A - Known Issues

The library does not support IPv6.

Copyright 2017 XMOS Ltd. 21 www.xmos.com
XM007217



XTCP (6.0.0)

APPENDIX B - TCP/IP library change log

B.1 6.0.0

• CHANGE: Unified the branches of uIP and lwIP as the backend of the XTCP stack. The default is uIP.
To change the stack, define XTCP_STACK in your makefile to be either UIP or LWIP. Then, instead of
calling xtcp(...), call either xtcp_uip(...) or xtcp_lwip(...) respectively.

• CHANGE: The interface between the client and server is now event-driven rather than polling.
• CHANGE: Channels have been replaced by interfaces as communication medium between client and

server.
• REMOVED: The following xtcp_event_types: XTCP_PUSH_DATA, XTCP_REQUEST_DATA, XTCP_POLL,

XTCP_ALREADY_HANDLED
• CHANGE: The fields of packet_length and client_num have been added to the xtcp_connection_t

structure.
• REMOVED: xtcp_connection_t no longer has a xtcp_connection_type_t field.
• REMOVED: The ability to pause a connection
• REMOVED: The ability to partially acknowledge a packet
• REMOVED: Support for IPv6
• REMOVED: the ability to send with an index. This functionality is easily replicated with a call to

send() with the pointer of the array index location, i.e. &(data[index]).
• REMOVED: Support for XTCP_EXCLUDE_* macros which reduced functionality in order to save code

size
• FIXED: Problem where ethernet packets smaller than 64 bytes would be incorrectly padded with uIP.
• Changes to dependencies:

– lib_crypto: Removed dependency

B.2 5.1.0

• ADDED: Support for using lib_wifi to provide the physical transport

B.3 5.0.0

• ADDED: Port of LwIP TCP/IP stack
• Changes to dependencies:

– lib_crypto: Added dependency 1.0.0

B.4 4.0.3

• ADDED: Support to enable link status notifications

B.5 4.0.2

• CHANGE: uIP timer.h renamed to uip_timer.h to avoid conflict with xcore timer.h
• CHANGE: Update to source code license and copyright

B.6 4.0.1

• CHANGE: MAC address parameter to xtcp() is now qualified as const to allow parallel usage
• RESOLVED: Fixed issue with link up/down events being ignored when SMI is not polled within XTCP

Copyright 2017 XMOS Ltd. 22 www.xmos.com
XM007217



XTCP (6.0.0)

B.7 4.0.0

• CHANGE: Moved over to new file structure
• CHANGE: Updated to use new lib_ethernet
• Changes to dependencies:

– lib_ethernet: Added dependency 3.0.0
– lib_gpio: Added dependency 1.0.0
– lib_locks: Added dependency 2.0.0
– lib_logging: Added dependency 2.0.0
– lib_otpinfo: Added dependency 2.0.0
– lib_xassert: Added dependency 2.0.0

B.8 Legacy release history

B.9 3.2.1

• Changes to dependencies:

– sc_ethernet: 2.2.7rc1 -> 2.3.1rc0

* Fix invalid inter-frame gaps.

* Adds AVB-DC support to sc_ethernet

B.10 3.2.0

• Added IPv6 support

B.11 3.1.5

• Fixed channel protocol bug that caused crash when xCONNECT is heavily loaded
• Various documentation updates
• Fixes to avoid warning in xTIMEcomposer studio version 13.0.0 or later
• Changes to dependencies:

– sc_ethernet: 2.2.5rc2 -> 2.2.7rc1

* Fix buffering bug on full implementation that caused crash under

* Various documentation updates

B.12 3.1.4

• Updated ethernet dependency to version 2.2.5

B.13 3.1.3

• Updated ethernet dependency to version 2.2.4
• Fixed corner case errors/improved robustness in DHCP protocol handling

B.14 3.1.2

• Fixed auto-ip bug for 2-core xtcp server

B.15 3.1.1

• Minor code demo app fixes (port structures should be declared on specific tiles)

Copyright 2017 XMOS Ltd. 23 www.xmos.com
XM007217



XTCP (6.0.0)

B.16 3.1.0

• Compatible with 2.2 module_ethernet
• Updated to new intializer api and integrated ethernet server

B.17 3.0.1

• Updated to use latest sc_ethernet package

B.18 3.0.0

• Fixed bugs in DHCP and multicast UDP
• Updated packaging, makefiles and documentation
• Updated to use latest sc_ethernet package

B.19 2.0.1

• Further memory improvements
• Additional conditional compilation
• Fix to zeroconf with netbios option enabled

B.20 2.0.0

• Memory improvements
• Fix error whereby UDP packets with broadcast destination were not received
• An initial implementation of a TFTP server

B.21 1.3.1

• Initial implementation

Copyright © 2017, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2017 XMOS Ltd. 24 www.xmos.com
XM007217


	TCP/IP Library
	Usage
	IP Configuration
	Events and Connections
	New Connections
	TCP and UDP
	Receiving Data
	Sending Data
	Link Status Events
	Configuration

	Configuration API
	Configuration Defines

	Functional API
	Data Structures/Types
	Server API
	Client API

	Known Issues
	TCP/IP library change log
	6.0.0
	5.1.0
	5.0.0
	4.0.3
	4.0.2
	4.0.1
	4.0.0
	Legacy release history
	3.2.1
	3.2.0
	3.1.5
	3.1.4
	3.1.3
	3.1.2
	3.1.1
	3.1.0
	3.0.1
	3.0.0
	2.0.1
	2.0.0
	1.3.1


