A buffered receiver

version 1.1.1

scope Example. This code is provided as example code for a user to base
their code on.

description A buffered receiver

boards Unless otherwise specified, this example runs on the SliceKIT Core
Board, but can easily be run on any XMOS device by using a different
XN file.

This example shows a receiver task that reads data off external 1/0 pins, and
buffers that data. A client task can read the data out of the buffer.

receiver task

1/0 Port
FIFO

Buffering data in this way decouples the client task from the receiver so that the
client is not bound by the real time constraints of the I/0.

The receiver receives data on a simple clocked port, 32 bits of data at a time. When
it receives data on the port, it will notify the client and place the data in a FIFO
buffer. The client can then pull 32-bit words out of this FIFO.

The first thing to define in the program is the interface between the receiver task
and its client.

Publication Date: 2013/11/15 REV A

XMOS © 2013, All Rights Reserved
AMOS

A buffered receiver 2/5

interface receiver_if {

// This *notification* function signals to the client when there is
// data in the buffer. Since it is a notification function it is

// special - instead of being called by the client it is used

// by the client to event when

// data is ready.

[[notification]] slave void data_ready();

// This function can be used by the client to pull data out of the fifo.
// It clears the notification raised by the data_ready() function.
[[clears_notification]] unsigned get_data();

// This function can be called to check if the receiver has any data in
// the buffer.

// Generally, you do not need to poll the receiver with this function
// since you can use the data_ready() notification instead

unsigned has_data();

B

The receiver task takes arguments to set it up. It takes the server end of an
interface connection using the receiver_if interface - this will be connected to the
client. It also takes the buffer size required and the ports and clock block variable
for using the external I/O pins. The I/O interface requires a data pin, a clock block
and a pin to provide a readyln signal.

The 1/0 protocol is a simple protocol directly supported by the XMOS Hardware-
Response port blocks. The clock block provides a clock for the data. When the
externally driven p_ready_in signal is driven high, it signals the start of the data.
After that data is clocked into the p_data port on the rising edge of the clock. Since

the data port is a buffered port, the data is deserialize into 32-bit chunks, so the
program will receive a 32-bit word at a time from the port.

- I) I B O B B
p_ready_in I —\—
p_data |—| ,—_

This is the prototype of the receiver task:

void receiver(server interface receiver_if i,
static const unsigned bufsize,
in buffered port:32 p_data,
clock clk,
in port p_ready_in)

Within definition of the task the first thing required is to define the local state. The
buffer array provides the memory space for the FIFO. To implement a FIFO, the
fifo_first_elemand fifo_last_elem hold the indices to the first and last element

REV A Y 4 MOS

A buffered receiver 3/5

in the FIFO. All the array elements between these indices hold the data (the FIFO
may wrap around the end of the array back to the beginning).

unsigned buffer [bufsizel;
unsigned fifo_first_elem = 0, fifo_last_elem = O0;

The initial part of the task sets up the port block. The protocol on the pins is one
supported by the Hardware-Response port blocks, so you can configure the port
using a library function to set it to Strobed Slave mode (i.e. data input is governed
by the readyln signal). The port configuration functions are found in xs1.h.

configure_in_port_strobed_slave(p_data, p_ready_in, clk);

The main body of the task is a loop with a select inside. This select will either
react to the port providing input, or to a request from the client over the interface
connection:

while (1) {
select {
case p :> unsigned data:
// handle port input

case i.get_data() -> unsigned result:
// request from client to get data, pop element off fifo
// and place it in the return value 'result'

case i.has_data() -> unsigned result:

// request form client to determine if there is data in buffer
// put 1 or O in the retrun value 'result'

When the port signals that it has data, the tasks reads it into the data variable.

case p_data :> unsigned data:

To handle the port input the program works out where it needs to be added to the
FIFO by adding one to the last element index (and wrapping round in the buffer if
needed).

unsigned insert_point = fifo_last_elem + 1;
if (insert_point == bufsize)
insert_point = 0;

If the insert point wraps all the way around to the beginning of the FIFO, there is
buffer overflow. In this case the task just drops the data but different overflow
handling code could be added here.

REV A

XMOS

A buffered receiver 4/5

if (insert_point == fifo_first_elem) {
//handle buffer overflow
break;

¥

If there is room in the buffer, the data is inserted into the array and the last element
index is updated.

buffer [insert_point] = data;
fifo_last_elem = insert_point;

Finally, the server calls the data_ready notification. This signals to the client that
there is some data in the buffer.

i.data_ready () ;

The following case responds to a client request for data. The return value back
to the client is declared as a variable result. The body of this case can set this
variable to pass a return value back to the client.

case i.get_data() -> unsigned result:

The data to extract from the FIFO is in the array at the position marked by the first
element index variable. However, if this is the same as the last element then the
buffer is empty. In this case the task returns the value 0 to the client, but different
buffer underflow handling code could be added here.

if (fifo_first_elem == fifo_last_elem) {
// handle buffer underflow
result = 0;
break;

}

To pop an element from the FIFO, the result variable needs to be set and the first
element index variable needs to be incremented (possibly wrapping around the
buffer array).

result = buffer[fifo_first_elem];

fifo_first_elem++;

if (fifo_first_elem == bufsize)
fifo_first_elem = 0;

Finally, if the FIFO is not empty, the task re-notifies the client that data is available.

if (fifo_first_elem != fifo_last_elem)
i.data_ready () ;

REV A Y 4 MOS

A buffered receiver 5/5

The final request the receiver task handles is from the client requesting whether
data is available. This case is quite simple, just needing to return the current state
based on the index variables for the FIFO.

case i.has_data() -> unsigned result:
// request form client to determine if there is data in buffer
// put 1 or O in the retrun value 'result'
result = (fifo_first_elem != fifo_last_elem);
break;

XMOS

Copyright © 2013, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

REV A

