XMOS Timing Analyzer Manual

REV B

Publication Date: 2013/5/30
XMOS © 2013, All Rights Reserved.

XMOS

XMOS Timing Analyzer Manual 2/69

SYNOPSIS

The XMOS Timing Analyzer (XTA) lets you determine the time taken to execute code on your target
platform. Due to the deterministic nature of the XMOS architecture, the tools can measure the
shortest and longest time required to execute a section of code. This document explains how to
use the tool in xTIMEcomposer Studio and what to look out for in the results. It contains examples
to help you get started and lists all the commands and options supported by the XTA.

REV B Y 4 MOS

XMOS Timing Analyzer Manual 3/69

Table of Contents

1 Introduction 4
2 Defining Timing-Critical Code 6
2.1 Using The Tool e e e e e e e e e e e e 6
2.2 LoadingaBinary e 6
2.3 ROUTES o e e e e e e e 7
2.4 Endpoints e e e e e e e e 7
2.5 Adding Endpoints ToSource o i i i i e e e e e e e 7
2.6 Timing Between Endpoints e 8
2.7 Timing FUNCLIONS o e e e e e e e e e e e e e e e 8
2.8 Timing LOOPS o o o e e e e 8
2.9 Setting Timing Requirements i i i i i i i e e e e e e 9
3 Viewing Results 10
3.1 Route IDs . . . o e e e e e e e e e e e e e 10
3.2 Node IDS e e e e e e e e e e e e e e 10
3.3 SUMMArNY e e e e e e e e e e 10
3.3.1 Violation e e e e e e e e e e 11
3.3.2 Slack e e e 11
3.4 STrUCTUNE o o e 11
3.5 Source Code Annotation i i i i e e e e 11
3.6 INStruction Traces o vt i i e e e e e e e e e e e e e e e 11
3.7 Fetch no-0ps o e e e e e e e 12
3.8 Scaling Results e e e e e e e e 12
3.9 Unknowns e e e e e e e e e 13
4 Refining Timing Results 14
4.1 EXclusions e e e e e e e e 14
4.2 Loop lterations o e e e e 16
4.3 Loop Path lterations e e e e 17
4.4 LOOP SCOPE . . o v e e e e e e e e 19
4.5 Instruction TiMes e e e e e e 20
4.6 Function Times i i i i it e e e e e e e e e e e e e e 21
4.7 Path Times e e e e e e e e e e e e e e 22
4.8 Active Tiles e e e e 24
4.9 Node FreqUeNCY . . . o v v v i i e e e e e e e e e e e e e e e e e e e 24
4.10 Number Of Logical Cores o o i i i i i i e e e e e e e e e e 24
5 Program Structure 26
5.1 Compiling For XTA e e e e e e e e e e 26
5.2 Structural Nodes e e e e 26
5.3 Identifying Nodes: Code References, 27
5.3.1 Source File-Line e e 28
5.3.2 Source Label 28
5.3.3 Call File-Line e e e e 28
5.3.4 CallLabel e e e 28
5.3.5 Endpoint File-Line e 28
5.3.6 EndpointLabel e 29
5.3.7 Label e e e e e e e e e 29

REV B Y 4 MOS

XMOS Timing Analyzer Manual 4/69

5.3.8 Function e e e e 29
5.3.9 Program Counter (PC) o i i e e 29

5.4 Reference Classes o o it e e e e e e e e e e e e e 29
5.4.1 ENDPOINT e e e e e e e e e e e e 29
5.4.2 CALL . . . o o e e e e e e e e 30
5.4.3 FUNCTION e e e e e e e e e e e e e e e e e 30
5.4.4 LABEL o L e e e e e e e 30
54,5 PO . . e e e e e e e e e 30
5.4.6 ForcingaSpecificType i i i i i i e e e 30

5.5 Back Trails e e e e e e 30
5.5.1 Inlining o e e e e e e e e 32

5.6 Scope of References e e e e e e e 32
6 When Code Analysis Succeeds 33
6.1 Multiple Route Creation i i i e e e e e 33
6.1.1 Endpoints Exist On Multiple xCORE Tiles 33
6.1.2 From Endpoint Can Be Reached In MultipleWays 34
6.1.3 Route Specific Exclusions Exist 34
6.1.4 Route Specific Branches Exist, 34
6.1.5 Looppoint Within Multiple Loops e 35

7 When Code Analysis Fails 36
7.1 EndpointNot Found e e 36
7.1.1 Invalid Reference e 36
7.1.2 Not Found On Active Tiles o e e 36
7.1.3 EndpointIn Data Section 36

7.2 Out Of Memory i i e e e e e e e e e e e 37
7.2.1 Restrict The Route i it e e e e e e e 37
7.2.2 Increase The JVM Size @ i i i i e e e e e e e 37

8 When Code Fails To Time 38
8.1 Unresolved e e 38
8.2 ReCUrsion e e e e e e 38
8.3 Infinite e e e e 39
8.4 llegal e e e e e 39
9 Automating The Process 40
9.1 Creating a SCript i e e e e e 40
9.1.1 Generating A SCript o v i i e e e e e e e e e 40
9.1.2 Writing AScript e e e e e 41

9.2 RUNNING @ SCriPt . . . v o e 41
9.2.1 During Compilation e 41
9.2.2 Running From Within xTIMEcomposer Studio 41
9.2.3 BatchMode e 42

9.3 Embedding Commands IntoSource e 42
9.4 Advanced Scripting Via the Jython Interface 42
9.4.1 Load Methods e 42
9.4.2 Route Creation/Deletion Methods 42
9.4.3 Add/Remove Methods @ . @ . e 43
9.4.4 SetMethods e e 44
9.4.5 GetMethods e 44
9.4.6 ConfigMethods e 45

REV B

XMOS Timing Analyzer Manual 5/69

10 GUI Reference 46
T10.1 VIieWS . . . e e e e e e e e e e e e e e e 46
10.T.T Routes View i e e e e e e e e e e e e e e 47
10.1.2 Disassembly View 47
10.1.3Console View i e e e e e e e e 47
10.1.4 Visualizations VIiew o i i it e e e e e e e e e e e e e 47
10.1.5Info View o o e e e e e e e e e 47
10.1.6 Problems View o i i e e e e e e e e e e 47
10.1.7 Files View o o e e e e e e e e e e e e e 47
10.2 EAitOrs . . . o e e e e e e e e e e e e e e e e 48
11 Working With Assembly 49
11.1 Assembly Directives i i e e e e e e e e 49
11.2 Branch Table Example e 49
11.3 Core Start/Stop Example e e e 50
12 Console Command Reference 52
12.7add . . . e e e 52
12.2analyze e e e e e e e e 53
12.3config . . . o o e e e e e e e e e 53
124 clear . . . o e e e e e e e e e e e e e e 54
12.5debug L e e 54
12.6eCho e e e e e e e e e e 55
12.7 eXit . o o e e 55
12.8help . . . o e e e e e 56
12,9 NiStOry . o o o e e e e e e e e e e e e e 56
12.100ad . . . 0 L e e e e e e e e e e e e e e e 56
12,1 0iSt . L e e e e 56
2 1 o T 1 | 57
12.1pWd . . . e e e 58
12.14eMOVE i e e e e e e e e e e e e e e e e e e 58
12 15Cripter . . . e e e e e e e e e e e e 59
12, 1Bt . . o e e e e e e e e e e e e e e e 59
T2.1B0UICE it e 60
12.181atUS o e e e e e e e e e e e e e e e e e 60
1 2. 19erSioN e 60
T12.20ragmas . . . v v o e 60
12.2Timing Modes e e e e e e e e 61
12.2200p SCOPES . . & . o i e e e e e e e 61
12.2Reference Classes v v v v i e e e e e e e e e e e e e e e e e 61
12.23.FUNCTION e e e e e e e e s e e e e s e e 61
12.23.BRANCH e e e 62
12.23.3NSTRUCTION e e e e e e e e e e e e e e 62
12.23.ENDPOINT e e e e 62
12.23.ANY . . e 63
12.23.6UNCTION_WITH_EVERYTHING e e e e e e e e 64
12.23.BRANCH_WITH_EVERYTHING e e et 64
12.23.8NSTRUCTION_WITH_EVERYTHING it i e e oo 64
12.23.ENDPOINT_WITH_EVERYTHING it 65
12.23.NY_WITH_EVERYTHING o e e e e e e e e e e e e e 65

13 Tool Limitations 67

REV B Y 4 MOS

XMOS Timing Analyzer Manual 6/69

14 Code Reference Grammar 68

REV B Y 4 MOS

1 Introduction

Figure 1:
Typical XTA
development
flow

The XMOS Timing Analyzer (XTA) lets you determine the time taken to execute code
on your target platform. Due to the deterministic nature of the XMOS architecture,
the tools can measure the shortest and longest time required to execute a section
of code. When combined with user-specified requirements, the tools can determine
at compile-time whether all timing-critical sections of code are guaranteed to
execute within their deadlines.

The typical flow for using XTA is shown in Figure 1.

(Load binary into XTA J

)

Define StartEndpoint/End Endpoint
in critical code section

V)

3 Run XTA to identify' routes
between endpoints

v

Specify timing requirement
for a route

N

i '
! Refine route - exclude code/ |
! set unknown values including loop
1 counts and instruction pause time ,

Are the
timing requirements for the
code met?

Do you want
to analyze another timing
critical section?

S Optimize critical code path Generate/write timing script

v

Add timing script to testing
and build system

1. Define the timing-critical code sections: It is possible to define the execution
time of functions and paths between two points in a program as being timing-
critical. For each of the routes identified, the timing requirements need to be
specified.

2. Create a timing script: Timing scripts are sequences of XTA console com-
mands. In order to write portable scripts the source code needs to be annotated
with XTA pragmas. The commands in the script can then refer to these pragmas.

REV B

XMOS

XMOS Timing Analyzer Manual 8/69

xTIMEcomposer Studio can automatically generate a script and annotate source
code with XTA pragmas once the user has identified the timing-critical routes.

. Use the script: The timing script can be passed to the compiler or run in batch

mode to verify that the program continues to meet its timing requirements each
time it is compiled.

REV B

XMOS

2 Defining Timing-Critical Code

IN THIS CHAPTER
Using The Tool

Loading a Binary

Routes

Endpoints

Adding Endpoints To Source

Timing Between Endpoints

Timing Functions

Timing Loops

Setting Timing Requirements

2.1

Using The Tool

The user must load a compiled binary into the XTA, then define the timing-critical
sections of code within the application and specify the timing constraints for each
section of code. The tool supports timing functions, timing loops and the execution
between two endpoints. The tool verifies that all possible paths of execution meet
the specified timing constraints. If all paths meet their timing requirements then
the minimum xCORE tile frequency the xCORE device can be run at to meet timing
requirements is also output.

The tool can be used interactively on the command-line or through a graphical user
interface (GUI) in xTIMEcomposer Studio.

2.2 Loading a Binary

When working within xTIMEcomposer Studio, loading a binary into the XTA is done
by creating a new Time configuration. These work in the same way as the Run and
Debug configurations. Once the configuration exists, the binary can be loaded into
the XTA using the Time button in the toolbar. To load a binary that does not have
an associated xTIMEcomposer project, see §10.1.7.

To load a binary from the console, type:

load <FILE NAME>

REV B

XMOS

XMOS Timing Analyzer Manual 10/69

2.3 Routes

A route is a timing-critical section of code. It consists of the set of all paths through

which control can flow between two points in a program (endpoints). A route can

be created by timing a function, timing a loop or by timing between endpoints.

2.4 Endpoints

An endpoint is any source line that, during the compilation process, must be
preserved, and its order with respect to other endpoints must be maintained. In
the GUI the locations of valid endpoints are marked in the editor.

To show a list of all endpoints type the following command on the console:

list allendpoints

If specifying a route with respect to assembly code then any valid label/program
counter (PC) can be used as an endpoint. However, program counters are classed
as non-portable endpoints as they are likely to change between compilations and
their use in scripts is therefore discouraged.

2.5 Adding Endpoints To Source

Figure 2:

Putting an
endpoint
pragma into

XC.

Source lines can be labeled with endpoint pragmas in order to ensure that the
endpoints are portable. For example, Figure 2 shows a function that has been
annotated with endpoint pragmas called start and stop.

int g(in port p) {

int x, y;

pragma xta endpoint " start "
P > X3

pragma xta endpoint " stop "
P >V

return (y - x);

The endpoints defined in source are listed in the Info View.

On the console, type:

list endpoints

REV B

XMOS

XMOS Timing Analyzer Manual 11/69

2.6 Timing Between Endpoints

A

In xTIMEcomposer Studio set the from and to endpoint and then click the Analyze
endpoints button. Endpoints are set by right-clicking on the marker showing
where valid endpoints are in the source.

On the console, type:

analyze endpoints <from ENDPOINT> <to ENDPOINT>

The tool does not time code across multiple xCORE tiles so both endpoints must
be on the same tile.

One analysis can result in multiple routes being generated (see §6.1 for further
details).

2.7 Timing Functions

In xTIMEcomposer Studio select the function name from the list of available
functions using the Analyze function button.

On the console, type:

analyze function <FUNCTION>

This will create a route which describes the set of all possible paths from the
function entry point to all the function return points.

2.8 Timing Loops

In XTIMEcomposer Studio set the looppoint and then click the Analyze loop button.
Looppoints are set by right-clicking in the margin and selecting the Set loop point
option.

On the console, type:

analyze loop <ANY>

This creates a route that describes all possible paths through the loop. It it
effectively a shortcut for timing between endpoints where the start and stop
endpoint is the same, the point is within a loop and an exclusion has been placed
such that everything outside the loop is excluded.

One analysis can result in multiple routes being generated (see §6.1 for further
details).

REV B

XMOS

XMOS Timing Analyzer Manual 12/69

2.9 Setting Timing Requirements

For each route created it is necessary to define its timing requirements. In xTIME-
composer Studio right-click on the route in the upper panel of the Routes View and
select Set timing requirements in the context menu.

On the console, type:

set required <route id> <value> <MODE>

The supported timing modes are defined in §12.21.

The route IDs can be found in the console by typing:

print summary

Alternatively, the - character can be used on the command-line or in a script to
refer to the last route analyzed.

XMOS

REV B

3 Viewing Results

IN THIS CHAPTER

Route IDs
Node IDs
Summary

Structure

Source Code Annotation

Instruction Traces

Fetch no-ops

Scaling Results

Unknowns

3.1 Route IDs

3.2 Node

All analyzed routes are given a unique route ID. However, when referring to routes
in a script, using the route ID may not always result in portable or robust scripts.
In many cases, the only route that needs to be referenced is the one that was last
analyzed. This can be achieved by using the ‘-’ character as the route ID. If the last
command created multiple routes then the ‘-’ character refers to all of the routes
created.

IDs

Within a single route, all nodes are assigned a unique ID number. This is required
as input for some of the console commands. The ‘-’ character can be used in this
context to refer to the top level node of the route.

3.3 Summary

In the GUI all routes created are shown in the upper pane of the Routes View in
the xTIMEcomposer. More detailed information on each route can be found by
hovering over the route in this list.

On the console, type:

print summary

Details for a specific route are shown using the command:

REV B

XMOS

XMOS Timing Analyzer Manual 14/69

print routeinfo <route id>

3.3.1 Violation
When a timing requirement has been set for a route and the route takes more
time to execute than required, the time difference is called a violation. This value

specifies how much faster the route needs to be executed in order to meet the
timing requirement.

3.3.2 Slack
When a timing requirement has been set for a route and the route takes less time to

execute than required, the time difference is called slack. This value specifies how
much slower the route could be executed and still meet the timing requirement.

3.4 Structure
The structure of a route can be examined in xTIMEcomposer Studio in two ways.

The lower pane of the Routes View shows the structure of the selected route as a
tree and the Structure Panel of the Visualizations View renders it graphically.

In the console, to display the the structure of a route type:

print structure <route id>

The structure used by the tool is described in §5.2.

3.5 Source Code Annotation
In xTIMEcomposer Studio the editors highlight code which is executed by the

section of a route that has been selected. The selection is done using the lower
pane of the Routes View.

In the console, to display the source code which is executed by a route type:

print src <route id>

If only a part of a route should be used then the node ID can be specified:

print src <route id> <node id>

3.6 Instruction Traces
To help the user understand the execution flow of a route, the tool supports

creating representative instruction traces. In xTIMEcomposer Studio right-click on
the route and select Trace in console.

REV B Y 4 MOS

XMOS Timing Analyzer Manual 15/69

3.7 Fetch

In the console type:

print trace <route id>

As a result of loops being unrolled when tracing, it is possible for the traces to
get very large. The trace operation can be cancelled at any time by pressing the
Escape key in xTIMEcomposer Studio or CTRL+C in the command-line tool.

A trace can be redirected to a file by using the console command:

print trace <route id> > <file>

Worst/Best Case

By default, the trace for worst-case path is printed. This can be changed to print
the best-case path instead.

In xTIMEcomposer Studio, to print the best case path instead, open the Timing
Properties and uncheck Print worst case.

On the console, type:

config case best

no-ops

The xCORE device may need to pause at certain times while more instructions are
fetched from memory. This results in the issue of fetch no-op instructions. These
are shown in the traces as FNOP at the points they will happen on the hardware.

In xTIMEcomposer Studio they are inserted into the disassembly at the points they
occur.

3.8 Scaling Results

By default, the tool scales all timing results. This means that the appropriate unit
(ms, us, ns) will be used to print time values. This can be changed so that all times
are printed in ns.

In xXTIMEcomposer Studio open the Timing Properties and uncheck the Scale
results.

On the console, type:

config scale false

REV B

XMOS

XMOS Timing Analyzer Manual 16/69

3.9 Unknowns

The tool may not always be able to determine the exact timing of a section of code.
This happens when the tool is unable to determine loop iteration counts or the
execution time of instructions. These conditions are reported as warnings in the

tool. The unknowns for the currently selected route are shown in the Unknowns
section of the Info View.

To display unknowns on the console, type:

list unknowns <route id>

§4 describes how to address these warnings.

REV B

XMOS

4 Refining Timing Results

IN THIS CHAPTER

Exclusions

Loop Iterations

Loop Path Iterations

Loop Scope

Instruction Times

Function Times

Path Times

Active Tiles

Node Frequency

Number Of Logical Cores

4.1

A

There are cases where the tool is unable to fully determine the timing of a section
of code, due to, for example, not being able to determine a loop count. This can
be addressed by adding defines. Defines can be added in two ways, to a global list,
or to a route-specific list. Those added to the global list get applied to every route
when upon creation.

The use of the global list can result in more concise scripts. However, It is important
to be careful with defines added to the global list since they are ignored if they fail
to get applied to a route. This allows a full set of defines to be created before any
routes, but does mean that errors in these defines might be missed. Route specific
defines (added post route creation) will always flag an error if there is one.

Exclusions

Not all paths of execution in a route may be timing-critical. The route may contain
cases to handle errors where the timing of the code is not important. These paths
can be ignored in the timing script by adding exclusions. Exclusions tell the tool to
ignore all paths which pass through that code point. Exclusions can be added to
the global list or applied to a specific route.

In xTIMEcomposer Studio, to set an exclusion on an existing route, right click
within the relevant path and select Exclude. This can be done in the editor, the
lower panel of the Routes View or the Structure tab of the Visualizations View.

On the console, type:

set exclusion <route id> <ANY>

REV B

XMOS

XMOS Timing Analyzer Manual 18/69

To add an exclusion to the list of exclusions to be taken into account during route
creation, right click within the relevant path and select Add to exclusion list. This
can be done on the vertical ruler of the text editor, in the Disassembly View, the
lower panel of the Routes View or the Structure tab of the Visualizations View.

On the console, type:

add exclusion <ANY>

The current global list of exclusions can be found in the Exclusions section of the
Info View.

On the console, type:

list exclusions

To remove an exclusion from the global list, find the relevant exclusion in the Info
View, right click and choose Remove or press Delete.

On the console, type:

remove exclusion <ANY|*>

For example, consider the code in Figure 3.

int calculate (int a, int b) {
if (willOverflow (a, b) {
pragma xta label " overflow "
return processOverflow ();

Figure 3: }
Excluding an return a + b;
invalid path }

To time the calculate function ignoring the error case:

Using route-specific defines:
analyze function calculate

set exclusion - overflow

Using global defines:
add exclusion overflow
analyze function calculate
Although functionally equivalent, exclusion via the global defines mechanism can

result in faster, and more memory efficient, route creation. This is because the
global exclusions can be taken into account during route creation, so the search

REV B Y 4 MOS

XMOS Timing Analyzer Manual 19/69

space can be reduced. For post route creation exclusions, the complete route is
created before any pruning occurs.

4.2 Loop lterations

A

Loop iteration counts can be unknown. Whenever possible, the compiler tells
the tool about loop iteration counts. However, some loop counts are not known
statically. In these cases the user is required to specify worst-case values.

The compiler does not emit any loop iteration counts unless optimizations have
been enabled (-O1 or greater).

Some loops are self loops (loops whose body is the same as the header) and
therefore have a minimum iteration count of 1.

In xTIMEcomposer Studio, to set loop iterations on an existing route, right click
within the body of the loop, but not within an inner loop, and select Set loop itera-
tions. This can be done on the vertical ruler of the text editor, in the Disassembly
View, the lower pane of the Routes View or the Structure tab of the Visualizations
View.

On the console, type:

set loop <route id> <ANY> <iterations>

To add an iteration count to the list of iteration counts to be used during route
creation, click the Add Define button in the toolbar, and select the Loop tab.

On the console, type:

add loop <ANY> <iterations>

The current list of global loop iteration counts can be found in the defines section
of the Info View.

On the console, type:

list loops

To remove a loop iteration count from the global list, find the relevant entry in the
Info View, right click and choose Remove or press Delete.

On the console, type:

remove loop <ANY|x*>

For example, consider the code in Figure 4.

To time the test function:

REV B

XMOS

XMOS Timing Analyzer Manual 20/69

Figure 4:

Setting loop

iterations.

void delay (int j) {
for (unsigned int i = 0; i < j; ++i) {
pragma xta label " delay_loop
delay_us (1);

"

}

int test () {
delay (10);
}

Using route-specific defines:
analyze function test

set loop - delay_loop 10

Using global defines:
add loop delay_loop 10

analyze function test

4.3 Loop Path Iterations

A loop may contain multiple paths through it. When a loop iteration count has been
set the tools assumes that all iterations will take the worst-case path of execution
through the loop. This is not always the case, and a more realistic worst-case can
be established by specifying the number of iterations on individual paths through
the loop.

To set loop path iterations on an existing route, right click on a path within the
body of the loop, and select Set loop path iterations. This can be done on the
vertical ruler of the text editor, in the Disassembly View, the lower pane of the
Routes View or the Structure tab of the Visualizations View.

On the console, type:

set looppath <route id> <ANY> <iterations>

To add a loop path count to the list of loop path counts to be used during route
creation, click the Add Define button in the toolbar, and select the Loop path tab.

On the console, type:

add looppath <ANY> <iterations>

The current list of global loop path counts can be found in the defines section of
the Info View.

REV B

XMOS

XMOS Timing Analyzer Manual 21/69

On the console, type:

list looppaths

To remove a loop path count from the global list, find the relevant entry in the Info
View, right click and choose Remove or press Delete.

On the console, type:

remove looppath <ANY|x*>

& There are some rules that need to be followed when setting loop path iterations:
In a nested loop, the outer loop iterations need to be set first.

The loop path iterations set must be less than or equal to the loop iterations set
on the enclosing loop.

If the loop path iterations set are less than that of the enclosing loop, then there
must exist another path within the loop without its iterations set to which the
remaining iterations can be allocated.

For example, consider the code in Figure 5:

void f(int j) {

for (unsigned int i = 0; i < j; ++i) {
pragma xta label " f_loop "
if ((i & 1) == 0) {
pragma xta label " f_if "
g O
}
}
}
Figure 5:
Setting loop int test () {
path £ (10);

iterations. |}

To time the test function:

Using route-specific defines:
analyze function test
set loop - f_loop 10
set looppath - f_if 5

Using global defines:
add loop f_loop 10

REV B Y 4 MOS

XMOS Timing Analyzer Manual 22/69

add looppath f_if 5

analyze function test

4.4 Loop Scope

By default, the tool assumes that the iterations for loops are relative—the iterations
for an inner loop will be multiplied by the iterations of enclosing loops. However
this is not sufficient to describe all loop structures. If this assumption is not correct
a loop count can be set to absolute. The iteration count set on an absolute loop is
not multiplied up by the iterations set on enclosing loops.

To set loop scope on an existing route, right click within the body of the loop, and
select Set loop scope. This can be done on the vertical ruler of the text editor, in
the Disassembly View, the lower pane of the Routes View or the Structure tab of
the Visualizations View.

On the console, type:

set loopscope <route id> <ANY> <absolute|relative>

To add a loop scope to the list of loop scopes to be used during route creation,
click the Add Define button in the toolbar, and select the Loop scope tab.

On the console, type:

add loopscope <ANY> <absolute|relative>

The current list of global loop scopes can be found in the defines section of the
Info View.

On the console, type:

list loopscopes

To remove a loop scope from the global list, find the relevant entry in the Info View,
right click and choose Remove.

On the console, type:

remove loopscope <ANY|x*>

For example, consider the code in Figure 6
To time the test function:

Using route-specific defines:
analyze function test

set loop - outer_loop 10

REV B

XMOS

XMOS Timing Analyzer Manual 23/69

Figure 6:

Setting loop

scope.

void f£(int 1) {
for (unsigned int i = 0; i < 1; ++i) {
pragma xta label " outer_loop
for (unsigned int j = 0; j < i; ++j) {
pragma xta label " inner_loop "

g O3

"

}

void test () {
f (10);
}

set loop - inner_loop 45

set loopscope - inner_loop absolute

Using global defines:
add loop outer_loop 10
add loop inner_loop 45
add loopscope inner_loop absolute

analyze function test

4.5 Instruction Times

Some instructions can pause the processor. By default, the tool reports timing
assuming that no instructions pause, but flags them as warnings. The user must
specify what the worst-case execution time of instructions are.

To set an instruction time in an existing route, right click on the instruction and
select Set instruction time. This can be done on the vertical ruler of the text
editor, in the Disassembly View, the lower pane of the Routes View or the Structure
tab of the Visualizations View.

On the console, type:

set instructiontime <route id> <ENDPOINT> <value> <MODE>

To add an instruction time to the list of instruction times to be used during route
creation, click the Add Define button in the toolbar, and select the Instruction
time tab.

On the console, type:

add instructiontime <ENDPOINT> <value> <MODE>

REV B

XMOS

XMOS Timing Analyzer Manual 24/69

The current list of global instruction times can be found in the defines section of
the Info View.

On the console, type:

list instructiontimes

To remove an instruction time from the global list, find the relevant entry in the
Info View, right click and choose Remove or press Delete.

On the console, type:

remove instructiontime <ANY|*>

For example, consider the code in Figure 7.

Figure 7 void f£(port p) {

Setting an # pragma endpoint " instr "
instruction p :> value ;
time. %}

To time the £ function:

Using route-specific defines:
analyze function f

set instructiontime - instr 100.0 ns

Using global defines:
add instructiontime instr 100.0 ns

analyze function f

4.6 Function Times

In some cases it is necessary to define the time it takes to execute an entire
function. The tool supports defining a function time. Once a function time is
defined, all the unknowns within it are ignored and any routes which span this
function will use the defined time instead of calculating it.

To set a function time on an existing route, right click on a function and select Set
function time. This can be done in the the lower pane of the Routes View or the
Structure tab of the Visualizations View.

On the console, type:

set functiontime <route id> <FUNCTION> <value> <MODE>

REV B Y 4 MOS

XMOS Timing Analyzer Manual 25/69

To add a function time to the list of function times to be used during route creation,
click the Add Define button in the toolbar, and select the Function time tab.

On the console, type:

add functiontime <FUNCTION> <value> <MODE>

The current list of global function times can be found in the defines section of the
Info View.

On the console, type:

list functiontimes

To remove an function time from the global list, find the relevant entry in the Info
View, right click and choose Remove.

On the console, type:

remove functiontime <FUNCTION |x*x>

For example, consider the code in Figure 8.

void delayOneSecond () {
g O;
}

Figure 8: void test () {
Setting a delayOneSecond ();
function time.

To time the test function:

Using route-specific defines:
analyze function test

set functiontime - delayOneSecond 1000.0 ms

Using global defines:
add functiontime delayOneSecond 1000.0 ms

analyze function test

4.7 Path Times

In some cases it is necessary to define the time it takes to execute a particular
section of code. The tool supports defining a path time for this case. Once a path

REV B Y 4 MOS

XMOS Timing Analyzer Manual 26/69

Figure 9:

Setting a path

time.

time is defined all the unknowns within it are ignored, and any routes which span
this section of code will use the defined time instead of calculating it.

To set a path time on an existing route, highlight the start and end nodes in the
lower pane of the Routes View, right click and and select Set path time.

On the console, type:

set pathtime <route id> <from ENDPOINT> <to ENDPOINT> <value> <MODE>

To add a path time to the list of path times to be used during route creation, click
the Add Define button in the toolbar, and select the Path time tab.

On the console, type:

add pathtime <from ENDPOINT> <to ENDPOINT> <value> <MODE>

The current list of global path times can be found in the defines section of the Info
View.

On the console, type:

list pathtimes

To remove an path time from the global list, find the relevant entry in the Info View,
right click and choose Remove.

On the console, type:

remove pathtime <from ENDPOINT |*> <to ENDPOINT |*>

For example, consider the code in Figure 9.

int £ {
int time ;
timer t;
pragma xta endpoint " start "
t :> time ;
pragma xta endpoint stop
t when timerafter (time + 100) :> time ;

}
void test () {

£ O3
}

To time the test function:

REV B

XMOS

XMOS Timing Analyzer Manual 27/69

Using route-specific defines:
analyze function test

set pathtime - start stop 1000.0 ns

Using global defines:
add pathtime start stop 1000.0 ns

analyze function test

4.8 Active Tiles

By default the tool finds routes on all tiles within a program. However, it is possible
to restrict the tool to work only on a subset of the tiles in the program. The set of
tiles all commands apply to is called the active tiles.

In xTIMEcomposer Studio open the Timing Properties and select which tiles are
active.

On the console, type:
add tile <tile id>
remove tile <tile id|*>

list tiles

4.9 Node Frequency

An XMOS device consists of a number of nodes, each one composed of a number
of xCORE tiles. The frequency at which a node runs is defined in the binary and
the tool reads this and configures the node frequencies when it loads the binary. It
is possible to experiment to determine what will happen at different frequencies if
desired.

In XTIMEcomposer Studio open the Timing Properties and change the frequency
for the node to be changed.

On the console, type:

config freq <node id> <tile frequency>

4.10 Number Of Logical Cores

The maximum number of logical cores run on a tile is known at compile time and
the tool extracts this information from the binary for each tile. It is possible to
experiment to determine what will happen if running with a different number of
cores if desired.

In xTIMEcomposer Studio open the Timing Properties and change the number of
cores for the node/tile to be changed.

REV B

XMOS

XMOS Timing Analyzer Manual 28/69

On the console, type:

config cores <tile id> <num cores>

REV B Y 4 MOS

5 Program Structure

IN THIS CHAPTER
Compiling For XTA

Structural Nodes

Identifying Nodes: Code References

Reference Classes

Back Trails

Scope of References

It is essential to understand how program structure is defined in order to use the
tool correctly.

Programs are written in multiple source files, each containing functions. Each
function will contain sequences of statements, loops (e.g. for / while / do),
conditionals (e.g. if / switch) and function calls.

5.1 Compiling For XTA

The compiler outputs information which allows the XTA tool to make associations
between source and instructions. This information is on by default but can be
disabled by adding the following flag to the compiler options:

-fno-xta-info

The compiler also supports adding debug information without affecting optimiza-
tions. Debug information is not required in order for the XTA tool to analyze code,
but the mapping between instructions and source code is not available without the
debug information. In order to add debug information compile with:

-8

5.2 Structural Nodes

The compiler tools create a binary file with one program per xCORE tile. The XTA
tool uses the binary file in order to produce accurate timing results.

When a route is created, the tool analyzes the binary to create a structure which
closely represents the high-level program structure. It decomposes the program
into structural nodes which can be displayed as a tree.

REV B

XMOS

XMOS Timing Analyzer Manual 30/69

5.3

The worst and best case time is then calculated for each of the structural nodes.
The way this is calculated depends on the type of structural node. The worst and
best case times for the overall route is built up from the worst and best case times
of the sub nodes.

The structural nodes can be of the following types:
Instruction: the most basic building block of the program is the instruction.

Block: a list of instruction nodes with no conditional branching which is therefore
executed in sequence. The worst/best case time for a block is the sum of its
component instructions.

Sequence: a list of structural nodes which are executed in order. The worst/best
case time for a sequence is the sum of the worst/best case times of its sub
nodes.

Conditional: a set of structural nodes out of which at most one node is executed.
If this is within a loop then on each iteration a different node might be chosen.
In some cases the entire conditional is optional. In those cases the best case
time is for none of the options to be taken. The worst/best case time for a
conditional is determined by the worst/best case time of each of its sub nodes.

Loop: consists of a header and a body (both of which are structural nodes).
The header corresponds to the conditional test part of the loop, and the body
corresponds to the code that is executed if the loop is taken. This roughly
corresponds to high level code structures such as while or for loops.

The body is executed once per iteration. The header always executes once
more than the number of iterations. The worst/best case times for a loop is the
worst/best case time of its header multiplied by (number of iterations + 1) plus
the worst/best case time of the body multiplied by the number of iterations.

Self-loop: a loop where the header and body are the same. It is therefore
considered to have a minimum loop count of 1. This roughly corresponds to
high level code structures such as do loops. The worst/best case time for a
self-loop is determined by the worst/best case time of its body multiplied up
buy the number of iterations.

Function: is the high-level construct of the function and consists of a list of other
structural nodes. The worst/best case time for a function is calculated in the
same way as that of a sequence.

Identifying Nodes: Code References

A code reference is the way to specify a particular location in an application. A
code reference is made up of a base and an optional backtrail. The base consists
of a reference type and the backtrail consists of a comma separated list of
reference types.

There are a number of different reference types, all of which map to one or more
instruction program counters (PCs). This will usually be one PC, but can be more
than one due to compiler optimizations or because the user has explicitly named

REV B

XMOS

XMOS Timing Analyzer Manual 31/69

multiple instructions with the same reference. Compiler optimizations such as
inlining or unrolling will result in the same reference mapping to multiple PCs. For
the grammar of specifying a code reference see §14.

The different reference types are detailed below. The commands to list the in-
stances of them for the currently loaded executable in the console are detailed
with each type. In xTIMEcomopser Studio the available references are shown in the
Info View.

5.3.1 Source File-Line

Source file-line references are valid for source lines which the compiler has defined
as belonging to a source-level basic block. The valid lines can be listed in the
console with:

list allsrclabels

5.3.2 Source Label

Source labels are added to source code using the #pragma xta label. To list the
source labels in the console type:

list srclabels

5.3.3 Call File-Line

Call file-line references are valid for source lines which map to function calls. To
list the valid source lines in the console type:

list allcalls

5.3.4 Call Label

Call labels are added to source code using the #pragma xta call. To list the source
labels in the console type:

list calls

5.3.5 Endpoint File-Line

Endpoint file-line references are available for source lines which map to a valid
endpoint. To list the endpoints in the console type:

list allendpoints

REV B

XMOS

XMOS Timing Analyzer Manual 32/69

5.3.6 Endpoint Label

Endpoint labels are added to the source using #pragma xta endpoint. They must
be on the line before an input/output operation. To list the labeled endpoints in
the console type:

list endpoints

5.3.7 Label

Labels are arbitrary text strings referring to any source or assembly label. To list
the labels in the console type:

list labels
Labels in assembly must be within an executable section.

5.3.8 Function

Functions are the functions contained within the binary. To list the labels in the
console type:

list functions

Functions in assembler must be labeled as functions with the .type directive in
order to be correctly detected by the tool (see xTIMEcomposer Studio User Guide).
They must also be within an executable section.

5.3.9 Program Counter (PC)

Program counters are the lowest-level reference, giving a hexadecimal program
counter value starting with 0x. They must map to the PC of an instruction within
the executable section of the program.

5.4 Reference Classes

Particular console commands and GUI actions only work on particular types of
references. The sets of reference types that are defined for a particular command
is know as a reference classes.

5.4.1 ENDPOINT

These are references which can be used for timing. This means any reference in
assembler (PC/label) and only source references which map to lines which can be
reliably used for timing. Compiler optimizations cannot remove them or re-order
them with respect to each other. In XC code these correspond to source lines with

XMOS

REV B

XMOS Timing Analyzer Manual 33/69

I/O operations. The following console command lists the types available in the
class:

help ENDPOINT

542 CALL

These references map to function calls. These are used in back trails to identify
unique instances of a code reference. The following console command lists the
types available in the class:

help CALL

5.4.3 FUNCTION

These references map to functions. The following console command lists the types
available in the class:

help FUNCTION

5.4.4 LABEL

The following console command lists the types available in the class:

help LABEL

5.4.5 PC

The following console command lists the types available in the class:

help PC

5.4.6 Forcing a Specific Type

It is possible to have a code reference which could map to multiple types. For
example there could be an endpoint which has been given the same name as a
function in the program. The way a reference in a backtrail is matched can depend
upon the type of the reference. In order to resolve this potential ambiguity, it is
possible to force the code reference to a certain type by prefixing with its type.
See §14 for details.

5.5 Back Trails

A code reference’s base may occur multiple times within a program. For example,
a function can be called from multiple places. The back trail for a reference is

REV B Y 4 MOS

XMOS Timing Analyzer Manual 34/69

Figure 10:

Using

backtrails.

a way of restricting a reference to specific instances. Consider the example file
shown in Figure 10.

1 void delay_n_seconds (int j) {

2 for (unsigned int i = 0; i < j; ++i) {
3 # pragma xta label " delay_loop "
4 delay_1_second ();

5 }

6 }

7

8 int test () {

9 # pragma xta call " delay_1 "

10 delay_n_seconds (10);

11 # pragma xta call " delay_2 "

12 delay_n_seconds (20);

13 return O;

14 }

The following commands could be used to time the test function:
analyze function test
set loop - delay_loop 10

That would have the effect of setting the number of loop iterations for the loop in
both instances of the delay_n_seconds to 10. However, as the number of iterations
are passed as a parameter to delay_n_seconds, the value is different for each call.

To time test correctly the loop iterations for each instance needs to be specified
differently. This can be achieved by the use of the call references and backtrails.
For example:

analyze function test

set loop - delay_1,delay_loop 10

set loop - delay_2,delay_loop 20

This tells the tool to set delay_loop to 10 iterations when called from delay_1, and
to 20 iterations when called from delay_2. The references used in the above case
are composed of a base reference of type source label, and a backtrial or size one,
of type call label. The above can also be achieved using the file-line equivalents.
For example:

analyze function test
set loop - source.xc:10,source.xc:3 10
set loop - source.xc:12,source.xc:3 20

However, this would not have resulted in a portable and robust script implementa-
tion, so using file-line references in this way from a script is not encouraged.

REV B

XMOS

XMOS Timing Analyzer Manual 35/69

A

5.5.1 Inlining
When the compiler inlines some code (for example the delay_n_seconds function

above) then some references will no longer be valid. In this case the following
reference would not exist because the call no longer exists:

source.xc:10,source.xc:3

However, if the call has been labeled with a call label, the compiler ensures that
the reference is still valid even if the code is inlined. So, in the above case, the
following reference will still be valid;

delay_1,delay_loop

5.6 Scope of References

References can have either global or local scope. Globally scoped references are
those which apply to (or get resolved on) the global tree. The global tree is the
notional structural representation of the whole program, prior to any route analysis
taking place. Locally scoped references are those which apply to (or get resolved
on) a user created route tree. Whether a particular reference is globally of locally
scoped depends on the command being executed. The following commands used
globally scoped references:

analyze path
analyze function
analyze loop
add exclusion
add branch

The following commands used locally scoped references:
set/add loop
set/add looppath
set/add loopscope
set/add instructiontime
set/add pathtime
set/add functiontime

In general, globally scoped references can lead to multiple route creation.

REV B

XMOS

6 When Code Analysis Succeeds

IN THIS CHAPTER

Multiple Route Creation

When analysis completes successfully, one or more routes are created and can be
seen in the GUI in the top pane of the Routes View or by typing:

print summary

6.1 Multiple Route Creation

In many cases, for a single analysis, only a single route will be created. However,
in the general case, for a single analysis, multiple routes can be created. This can
occur in a number of different situations.

6.1.1 Endpoints Exist On Multiple xCORE Tiles

Consider the code in Figure 11. Analyzing from a to b produces two routes, one
for each tile it is found on.

port p = XS1_PORT_1A ;
void f() {
int value ;

pragma endpoint "a"
p :> value ;

pragma endpoint "b"
p :> value ;

}

int main () {
par {
on tile [0] : £Q);
on tile [1] : £Q);
Figure 11: }
Routes on return O;
multiple tiles. }

REV B Y 4 MOS

XMOS Timing Analyzer Manual

37/69

Figure 12:

Multiple
instances of a

function.

Figure 13:

Route
specific

exclusions.

6.1.2 From Endpoint Can Be Reached In Multiple Ways

Consider the code in Figure 12. Analyzing from a to b in the following code will
produce two routes because there are two instances of the function f£.

port p =

XS1_PORT_1A ;

void £f() {

int

pragma endpoint "a"
p :> value ;

}

main () {

£ O3

£ O3

pragma endpoint "b"
p :> value ;

return O;

6.1.3 Route Specific Exclusions Exist

Consider the code in Figure 13. Setting an exclusion on a1,excl and analyzing
function a causes two routes to be created. This is because there are two calls to
function a, but the exclusion is only relevant for one of the calls so the two routes
are different.

int

}

int

a(int i) {

if (i == 6) {
pragma xta label
++1

+

return i;

main () {

pragma xta call "al"
a (4);
pragma xta call "a2"

a (5);
return 0;

" excl "

6.1.4 Route Specific Branches Exist

Consider the code in Figure 14. Setting a branch from CALL:calltest1,sourcel to
target1 and analyzing function test will cause two routes to be created. This is

REV B

XMOS

XMOS Timing Analyzer Manual

38/69

Figure 14:
Route
specific
branches

Figure 15:
Looppoint
within
multiple

loops.

because there are two calls to function test, but the branch is only relevant for

one of the calls thus the two routes will be different.

type main , efunction
globl main
main
entsp 1
calltest1l
bl test
calltest2
bl test
retsp 1

type test , efunction
globl test
test
sourcel
bau ri
targetl
retsp O

6.1.5 Looppoint Within Multiple Loops

Consider the code in Figure 15. Analyzing a loop using the looppoint as a reference
will cause two routes to be created. This is because the reference exists within two

different loops.

int g {
pragma xta label " looppoint "
return 1;

}
void a(int loopCount) {
int i = 0;
while (i < loopCount) {
i+=g O3
}
}
void b(int loopCount) {
int i = 0;
while (i < loopCount) {
i+=g O3
}

REV B

XMOS

7 When Code Analysis Fails

IN THIS CHAPTER
Endpoint Not Found
Out Of Memory

7.1

There are cases where analysis fails and no routes are created.

Endpoint Not Found

Endpoints are invalid if they fail to map to an instruction address. This can be due
to a number of reasons.

7.1.1 Invalid Reference

The reference used in the analysis cannot be resolved to a valid PC. This can be
due to having made a mistake in the spelling of a label or endpoint, or because of
a compiler optimization has eliminated the code being timed.

The Info View of xTIMEcomposer Studio shows which endpoints, labels and calls
are available in the binary.

On the console the available endpoints, labels and calls can be listed with:
list endpoints
list srclabels

list calls

7.1.2 Not Found On Active Tiles

The user can configure which of the xCORE tiles in the binary are taken into account
when performing analysis. The endpoint reference may not be found on the current
subset of tiles being analyzed.

To fix this ensure that the relevant tiles are active for the endpoint (see §4.8).

7.1.3 Endpoint In Data Section

The tool only decodes instructions from the executable sections. Therefore, if an
endpoint maps to a data section it will not be found. This is usually due to an error
in an assembler file so that code is not placed in a .text section.

To fix this place a .text directive before the code.

REV B

XMOS

XMOS Timing Analyzer Manual 40/69

7.2 Out Of Memory

There are cases where the tool can run out of memory when analyzing the requested
route or function. This is due to the complexity of the route being analyzed. This
can be resolved by either restricting the route (using exclusions) or increasing the
JVM size.

7.2.1 Restrict The Route

Generally, when the tool runs out of memory it is because the user is timing code
which is not restricted to the code they intended to time. In these cases add
exclusions to reduce the complexity of the routes and therefore the memory usage
of the tool.

7.2.2 Increase The JVM Size

To increase the amount of memory available to the Java Virtual Machine,
change the JVM_ARGS environment variable. The default value for
xTIMEcomposer Studio is 1024MB. This is configured through the
<tools>/xtimecomposer_bin/xtimecomposer.ini file.

For the command-line tools the <tools>/bin/xtimecomposericon.bat should be
edited to configure the JVM size. Adding the following line would give the same
memory size as XTIMEcomposer Studio uses.

JVM_ARGS=-Xmx1024m

REV B

XMOS

8 When Code Fails To Time

IN THIS CHAPTER
Unresolved
Recursion
Infinite

lllegal

There are cases when the analysis completes, i.e. routes are created, but the
worstcase time for the routes cannot be determined. The following sections
describe the main causes of these failures and how to diagnose and resolve them.

8.1 Unresolved

When the XTA tool finds a branch instruction whose branch target is unknown it
has to report that the time is Unresolved.

In order to determine which instruction is causing the issue the tool can be
instructed to print an instruction trace. This will show the worst-case path ending
with the unresolved instruction.

In xTIMEcomposer Studio, a trace can be printed by right clicking on the route in
the top panel of the Routes View and selecting Trace in console.

On the console, type:

print trace -

To resolve this issue the XTA tool needs to be told the target of the branch
instruction. This is done through either the .xtabranch assembler directive or the
console command:

add branch <from BRANCH> [<to INSTRUCTION>]+

8.2 Recursion

The tool does not support timing of recursive functions. The tool reports that the
path contains recursion and the timing will therefore fail.

The location at which the recursion occurs can be determined by printing the
instruction trace as for the case of unresolved branches.

REV B Y 4 MOS

XMOS Timing Analyzer Manual 42/69

8.3

8.4

Since this is a current limitation of the tool it is not possible to time this path. If
the code has to be timed then it should be re-factored into an iterative function. If
the recursive path is not of interest then it can be excluded so that the rest of the
route can be timed.

Infinite

If the tool encounters an infinite loop (for example while (1)) it reports that the
timing is infinite.

To determine where the infinite loop is use the console command:

print structure <route id>

or examine the route structure in the lower panel of the Routes View or the
Structure tab of the Visualizations View.

Since the infinite loop never terminates it cannot be timed. The tool can time how
long it takes to execute each iteration of the loop. To time the loop, analyze a
path with the to and from endpoints set to the same point in the loop, or use the
analyse loop functionality.

lllegal

If an illegal instruction is found in a path then the time cannot be determined. The
location of the illegal instruction can be found by printing a worst-case trace of the
route.

It is impossible for the tool to time illegal instructions. Therefore, in order to get a
valid timing result the path with the illegal instruction must be excluded.

REV B

XMOS

9 Automating The Process

IN THIS CHAPTER

Creating a Script

Running a Script

Embedding Commands Into Source

Advanced Scripting Via the Jython Interface

9.1

Once the XTA has been used interactively to create the timing critical routes, the
tool can be automated to ensure that new versions of an application still meet the
timing requirements.

Creating a Script

The first step to automating the process is creating a timing script. The script can
either be generated by the tool or written by hand.

9.1.1 Generating A Script

Once the timing critical sections of code have been timed, refined and their timing
requirements set, a script can be generated. The script will re-create the current
set of routes.

Tool Creating A Script

In the GUI press the Generate Script button on the toolbar. This brings up a dialog
showing the endpoints, labels and calls which will be used to create the script. The
tool attempts to make all references portable. In order to do this it inserts the
necessary pragmas into the source.

The names of the pragmas and whether or not they are used can be configured
through this dialog. The name of the script to be created is also configured through
this dialog.

If creating a script within an existing project then the script is automatically run on
future compilations.

If the script creation process has modified the source (e.g. by inserting pragmas),
then the relevant binary must be rebuilt before the script can be successfully
executed.

REV B

XMOS

XMOS Timing Analyzer Manual 44/69

9.1.2 Writing A Script

It is also possible to write a script by hand. In this case the user must insert
pragmas into the source code where required to make the script portable.

The script file is a sequence of XTA console commands. Each one on a separate
line. Any line starting with the # symbol is considered a comment.

It is recommended not to put a load or exit command in the script. These
commands should be done at the time of calling the script.

XTA scripts must use the .xta extension in order to be used by the compiler and
understood correctly by xTIMEcomposer Studio.

9.2 Running a Script

Scripts can be run in a number of different ways, either in xTIMEcomposer Studio
or on the command-line.

9.2.1 During Compilation

In XTIMEcomposer Studio .xta scripts are automatically added to the compiler
flags for compilation. On the command line the .xta scripts must be passed to the
compiler manually. By default, timing failures are treated as warnings and syntax
errors in the script as errors.

To treat timing failures as errors, add the following to the compiler arguments:

-Werror=timing

In order to treat script syntax errors as warnings, add the following to the compiler
arguments:

-Wno-error=timing-syntax

9.2.2 Running From Within xTIMEcomposer Studio

There are two ways in which an .xta script can be executed from within xTIMEcom-
poser Studio.

If the binary was loaded into the XTA via a Time Configuration, then an XTA script
can be specified in the configuration. This has the effect of running the specified
script on the loaded binary whenever a new timing session is started. Note: This
will also rebuild the binary if required, thus ensuring that the script is run on the
most up to date version of the binary.

Alternatively scripts can be sourced from within the xTIMEcomposer Timing Per-
spective by clicking on the Run Script icon in the toolbar. This will run the script
command on the binary that is currently loaded in the XTA.

XMOS

REV B

XMOS Timing Analyzer Manual 45/69

9.2.3 Batch Mode

The XTA tool can be run in batch mode. It takes command-line arguments and
interprets them as XTA commands. For example, to run an XTA script (script.xta)
on a binary (test.xe) use:

xta -load test.xe -source script.xta -exit

Note: the ‘-’ character is used as a separator between commands.

9.3 Embedding Commands Into Source

The tool supports the ability to embed commands into source code. A command is
embedded into the source using a command pragma. For example,

#pragma xta command "print summary"

All commands embedded into the source are run every time the binary is loaded
into the XTA. Commands are executed in the order they occur in the file, but the
order between commands in different source files is not defined.

Pragmas are only supported in XC code. See §12.20 for further information.

9.4 Advanced Scripting Via the Jython Interface

The XTA supports the writing of scripts using the Jython language (an implementa-
tion of Python running on the Java virtual machine). XTA Jython scripts must have
the extension .py. They can be executed in the same way as command based XTA
scripts. From within Jython, XTA features are made available though the globally
accessible xta object. See Figure 16 for an example script. This scripts loads the
binary test.xe into the XTA and analyzes the function functionName. It then sets
a loop count on each of the resulting routes and finally, prints the best and worst
case times for each.

The interface to the global xta object is as follows:

9.4.1 Load Methods

void load(String fileName) throws Exception

9.4.2 Route Creation/Deletion Methods

List<Integer> analyzeFunction(String functionName) throws Exception
List<Integer> analyzeEndpoints(String fromRef, String toRef) throws Exception
List<Integer> analyzeLoop(String loopRef) throws Exception

void removeRoute(int routeId) throws Exception

REV B Y 4 MOS

XMOS Timing Analyzer Manual

46/69

Figure 16:

Example of
an XTA

Jython script.

import sys
import java

try
xta . load (" test .xe");

except java . lang . Exception , e:
print e. getMessage ()

try :
ids = xta . analyzeFunction (" functionName ");

for id in ids :
xta . setLoop (id , " loopReference ", 10)

for id in ids :
print xta . getRouteDescription (id),

print xta . getWorstCase (id , "mns"),
print xta . getBestCase (id , "mns"
except java . lang . Exception , e:

print e. getMessage ()

9.4.3 Add/Remove Methods

void addTile(String tileReference) throws Exception
void removeTile(String tileReference) throws Exception
Collection<String> getTiles() throws Exception

void addExclusion(String ref) throws Exception
void removeExclusion(String ref) throws Exception
Collection<String> getExclusions() throws Exception

void addBranch(String fromRefString, Collection<String> toRefStrings)

throws Exception

void removeBranch(String fromRefString, Collection<String> toRefStrings)

throws Exception
Collection<String> getBranches() throws Exception

Collection<String> getBranchTargets(String branch) throws Exception

void addLoop(String ref, long iterations) throws Exception

void removeLoop(String ref) throws Exception
Collection<String> getLoops() throws Exception

void addLoopPath(String ref, long iterations) throws Exception

void removeLoopPath(String ref) throws Exception
Collection<String> getLoopPaths() throws Exception

void addLoopScope(String ref, boolean absolute) throws Exception

REV B

XMOS

XMOS Timing Analyzer Manual 47/69

void removeLoopScope(String ref) throws Exception
Collection<String> getLoopScopes() throws Exception

void addInstructionTime(String ref, double value, String units)
throws Exception

void removelInstructionTime(String ref) throws Exception
Collection<String> getInstructionTimes() throws Exception

void addFunctionTime(String ref, double value, String units)
throws Exception

void removeFunctionTime(String ref) throws Exception
Collection<String> getFunctionTimes() throws Exception

void addPathTime(String fromRef, String toRef, double value, String units)
throws Exception

void removePathTime(String fromRef, String toRef) throws Exception
Collection<String> getPathTimes() throws Exception

9.4.4 Set Methods

void setRequired(int routeld, double value, String units) throws Exception
void setFunctionTime(int routeIld, String refString, double value,

String units) throws Exception

void setPathTime(int routeld, String fromRef, String toRef, double value,
String units) throws Exception

void setInstructionTime(int routeld, String refString, double value,
String units) throws Exception

void setLoop(int routeld, String refString, long iterations)

throws Exception

void setLoopPath(int routeld, String refString, long iterations)

throws Exception

void setLoopScope(int routeld, String refString, boolean absolute)

throws Exception

void setExclusion(int routeId, String refString) throws Exception

9.4.5 Get Methods

double getRequired(int routeld, String units) throws Exception
double getWorstCase(int routeld, String units) throws Exception
double getBestCase(int routeld, String units) throws Exception
List<String> getWarnings(int routeld) throws Exception
List<String> getErrors(int routeId) throws Exception

List<Integer> getRoutelds() String getRouteDescription(int routeId)
throws Exception

REV B

XMOS

XMOS Timing Analyzer Manual 48/69

9.4.6 Config Methods

void configCores(String tileReference, int numCores) throws Exception
void configFreq(String nodeld, double tileFrequency) throws Exception

REV B Y 4 MOS

10GUI Reference

IN THIS CHAPTER
Views

Editors

The XTA graphical user interface is provided as part of the XMOS Development
Environment. The xTIMEcomposer Timing Perspective can be opened by selecting a
binary in the Project Explorer and clicking the Time button on the toolbar.

10.1 Views

The xTIMEcomposer Timing Perspective consists of a set of editors, which display
the code and a set of supporting views, which highlight timing related aspects of
the code.

Source Covered By
Routes View Current Analysis Disassembly View

(@ Timing - f_tests ' X . - XMOS. =EI0)|
Flle Edit Navigate Search Project Timing Run Window Help

riv we lar | ov |6y o omow e R 1 [.Timing| Tichc
A Routes 11 [Project Explorer]. = B[test.c 2t = B[Disassembly 5t &
| dunctonsmain NN 5| stdcorefo]
#0x1008a _TouchRegisters: | &
return x / 2; +6x100a4 “SetupTraps: |
+ox100aa _ free_Libe_ hwlock:|
ction main : 197 us 172 oxto0ac Falf:
int tines2(int x oxi6eac entsp (u6) 033
b i=block :30.0ns (x1)/30.0ns (x1) it x) Bxdseac stw (rus) 1o, splea]
< % function test : 187 us /162 us return x = 2; T e (v
= e . ox100b0 mkask (rus) F1, 6x5
piztlock: 10008 b/e0uebdl 6x16002 Ldw (rus) r2, Splex2]
> Gloop :174us/149us int test(int res) L 6x100b4 shr (3r) 1, r2, r1
b iZblock :70.0ns (¢1)/70.0ns (x1) || { olews GO iad
e x for (int 1= ;i <18; i) x ashr (L2rus) r1, r1, ox
b iZblock :70.0ns (<1)/70.0ns (x 1) e LI
res = (res > 5) ? half(res) : times2(res); 0x188be stw (rué) r1, spex1]
Fioe
return res; 0x100c0 L (ru6) 10, sp(0x1]
) ox100c2 retsp (u6) 033

+6x100c4 tines2:
int nain()(+0x100d4 test:|
return test(s); +6x10116 main:|
+0x101le _DoException:[|

™ Console| @ Info 2 [l Problems NN N =]

Worst Case

Structure | Function Time Distribution

Execution Path < o

T———Path of Both Best and
rif

Figure 17: Worst Case Execution

XTIMEcomposer Best Case
Timing Execution Path]|

Prespective. 1

REV B Y 4 MOS

XMOS Timing Analyzer Manual 50/69

10.1.1 Routes View

This view is split into two parts. The upper panel consists of a list of the currently
analyzed routes. The lower panel displays the structure, in a tree format, of the
currently selected route (i.e. the route that is selected in the upper panel).

The view shows the best and worst case timing values for a route.

10.1.2 Disassembly View

This view shows the disassembled instructions for the currently loaded application.

There is one tab per xCORE tile found in the binary.

10.1.3 Console View

This view gives the user access to the XTA console.

10.1.4 Visualizations View

Contains multiple different visualizations, each in its own tab:
Structure Displays the static structure for the currently selected route. This is
the pictorial equivalent of the lower panel of the Routes View which shows the
same structural information in a tree based format.
Function Displays the dynamic behavior of either the worst or base case path
though the currently selected route. In many ways, this is the pictorial equivalent
of the trace in console functionality.

Distribution Displays the shape of the distribution of the time taken for each of
the paths through the currently selected route.

10.1.5 Info View
This view displays the current exclusion list, the unknowns/knowns for the currently

selected route, the current defines and the contents of the XTA specific binary
sections.

10.1.6 Problems View

Any errors/warnings detected during the operation of the tool are logged here.

10.1.7 Files View

The tool does support timing of binaries that have been built outside of an xTIME-
composer project. In order to open a binary which is not part of an xTIMEcomposer
project open the Files View.

Choose Windows » Show View » Other » Timing » Files.

REV B

XMOS

XMOS Timing Analyzer Manual 51/69

The Files View has an Open File button which allows any binary to be opened.
Once the binary is open the Files View shows a list of the source files for the binary
opened.

10.2 Editors

In the xTIMEcomposer Timing Perspective the source editors are annotated with
XTA information. They show where valid endpoints are located in the vertical ruler
bar to the left of the editor. When a route is selected they show through which
source lines the path passes.

& The annotations in source editors are only available if the binary is newer than the
source. This is to prevent confusion of incorrectly annotating a source which no
longer matches the binary.

When in the xTIMEcomposer Timing Perspective all editors corresponding to the
binary which has been opened are changed to be read-only to prevent them from
being accidentally modified.

REV B Y 4 MOS

11Working With Assembly

IN THIS CHAPTER
Assembly Directives
Branch Table Example

Core Start/Stop Example

When writing programs in assembly it is still possible to label code to make it
portable using assembler directives.

11.1 Assembly Directives

The XMOS Timing Analyzer directives add timing metadata to ELF sections.

xtabranch specifies a comma-separated list of locations that may be branched
to from the current location.

xtacall marks the current location as a function call with the specified label.
xtaendpoint marks the current location as an endpoint with the specified label.
xtalabel marks the current location using the specified label.

xtacorestart specifies that a logical core may be initialized to start executing
at the current location.

xtacorestop specifies that a logical core executing the instruction at the current
location will not execute any further instructions.

The xtacall, xtaendpoint, xtalabel directives are intended for use by the compiler
only. They are used to link lines of source code with assembly instructions. All
other XTA functionality provided by these directives (timing, exclusions) should be
possible through the use of labels in the assembly code.

& Strings used by the XTA for xtacall, xtaendpoint and xtalabel must not contain
spaces.

11.2 Branch Table Example

If a branch table is written in assembly, the user must add branch target information
in order for the XTA to be able to analyze the assembly properly . This information
is given in the form of a .xtabranch directive. For example, consider the code in
Figure 18.

REV B Y 4 MOS

XMOS Timing Analyzer Manual 53/69

type f, efunction
. globl f
f:
entsp 1
xtabranch Ltargetl , Ltarget2 , Ltarget3
bru r0
Ltargetil
bl taskA
retsp 1
Ltarget2
bl taskB
Figure 18: retsp 1
Setting Ltarget3
branch bl taskC
targets retsp 1

The XTA is not able to determine where the bru instruction will branch to because it
is branching off a register value which is an argument to main. With the directive the
XTA can consider the bru instruction to have the three targets (Ltarget1, Ltarget2,
Ltarget3) and the XTA can successfully time the function.

11.3 Core Start/Stop Example

By default the XTA, assumes that the initial logical core starts executing at the
RAM base. However, if the user adds another core in assembly then for the XTA
to know that the code is reachable the user needs to insert .xtacorestart and
.xtacorestop directives.

For example, consider the code in Figure 19.

With the xtacorestart and xtacorestop directives the XTA knows that the code
after the label secondCore is reachable and hence can be analyzed.

REV B Y 4 MOS

XMOS Timing Analyzer Manual 54/69

type main , efunction
globl main
main
getr rl1 , XS1 \ _RES \ _TYPE \ _CORE
ldap r11 , secondCore

init t[r1 l:pc , rii
start t[ri]

ldc r1 , O
loop

bf r1 , loop

retsp O

secondCore
xtacorestart

Figure 19: ldc r0 , 1

Setting core tsetmr rl1 , rO
start and . Xtacorestop

stop points. freet

REV B Y 4 MOS

12 Console Command Reference

IN THIS CHAPTER
add
analyze
config
clear
debug
echo
exit
help
history
load
list
print
pwd
remove
scripter
set
source
status
version
Pragmas
Timing Modes
Loop Scopes

Reference Classes

12.1 add

add branch <from BRANCH> [<to INSTRUCTION>]+
Adds the given from/to references to the branches list

add tile <tile id|=*>
Add xCORE tile to active set

add exclusion <ANY>

REV B Y 4 MOS

XMOS Timing Analyzer Manual 56/69

Adds the given reference to the list of exclusions

add functiontime <FUNCTION> <value> <MODE>
Adds the given function time to the list of defines

add instructiontime <ENDPOINT> <value> <MODE>
Adds the given instruction time to the list of defines

add loop <ANY> <iterations>
Adds the given loop count define to the list of defines

add looppath <ANY> <iterations>
Adds the given loop path count define to the list of defines

add loopscope <ANY> <SCOPE>
Adds the given loop scope define to the list of defines

add pathtime <from ENDPOINT> <to ENDPOINT> <value> <MODE>
Adds the given path time to the list of defines

12.2 analyze

analyze endpoints <from ENDPOINT> <to ENDPOINT>
Analyzes between the specified endpoints

analyze function <FUNCTION>
Analyzes the given function

analyze loop <ANY>
Analyzes the given loop

12.3 config

config case <best/worst>
Sets the case (currently: worst)

config Ewarning <on/off>
Treats errors as warnings or not (currently: off)

config freq <node id> <tile frequency>
Sets the operating frequency in MHz for the given node

config from <ENDPOINT>
Sets the from endpoint

config looppoint <ANY>
Sets the loop point

REV B Y 4 MOS

XMOS Timing Analyzer Manual

57/69

config scale <true/false>
Configures whether results are scales (currently: true)

config srcpaths <paths>
Sets the (semicolon separated) source search path

config cores <tile id> <num cores>
Sets number of cores currently executing for the given tile

config timeout <seconds>
Sets the tools timeout on load

config Terror <on/off>
Treat timing failures as errors or not (currently: on)

config to <ENDPOINT>
Sets the to endpoint

config verbosity <level>
Sets the tool verbosity level (range: -10 -> +10, default: 0)

config Werror <on/off>
Treats warnings as errors or not (currently: off)

12.4 clear

clear()
Clears the screen (GUI mode only)

12.5 debug

debug dumpactiveexclusions()
Dumps a list of PCs that the exclusions have resolved to

debug dumpcachedfunction <FUNCTION>
Dumps the cached function structure

debug dumpcallgraph()
Dumps the call graph for all tiles in dot (graphviz) format

debug dumpcontrolflow <FUNCTION>

Dumps the control flow graph for the given function in dot (graphviz) format

debug dumpmanual ()

Dumps the console reference chapter of the manual in tex format

debug dumpstacknodes <REFERENCE>
Dumps the stack nodes for the given reference

REV B Y 4 MOS

XMOS Timing Analyzer Manual 58/69

debug

debug

debug

debug

debug

debug

debug

debug

debug

debug

debug

debug

debug

12.6

dumpunresolvedinstructions ()
Dumps a list of instructions that are unresolved

verifyreference <ANY>
Verifies the existance of the given reference

frompoints ()

Displays the from endpoints currently configured

topoints ()
Displays the to endpoints currently configured

instructiontime <route id> <node id>
Displays the instruction time set for the given node in the given route

loop <route id> <node id>
Displays the loop iterations set for the given node in the given route

looppath <route id> <node id>
Displays the loop path iterations set for the given node in the given route

loopscope <route id> <node id>
Displays the loop scope set for the given node in the given route

listglobalreferences <ANY>
Lists all the matching references for the given reference on the global tree

listroutereferences <route id> <ANY>

Lists all the matching references for the given reference on the given route

memusage ()

Displays the current memory usage for the JVM

getmemthreshold()
Displays the current memory usage threshold

setmemthreshold <threshold>
Sets the memory threshold to the given value (0.0 - 1.0)

echo

echo "text"

12.7

exit()

Prints the text to the console

exit

Quits the application

REV B

XMOS

XMOS Timing Analyzer Manual

59/69

12.8 help

help [command|command subcommand|option]
Displays help message for the given arguments

12.9 history

history()
Displays the command history

12.10 load

load <xe file>
Loads the given XMOS executable file

12.11 list

list allcalls()
Lists all the possible locations for calls

list allendpoints()
Lists all the possible locations for endpoints

list branches [route id]
Lists the branches - optionally for the specified route

list calls()
Lists the calls

list tiles()
Lists the active xCORE tiles

list endpoints()
Lists the endpoints

list exclusions [route id]
Displays the exclusions - optionally for the specified route

list functions()
Lists the functions in the loaded application

list functiontimes()

Displays the function time defines

list instructiontimes()

Displays the instruction time defines

REV B Y 4 MOS

XMOS Timing Analyzer Manual 60/69

list knowns <route id>
Displays the list of knowns set for the given route

list labels()
Lists the labels

list loops()
Displays the loop defines

list looppaths()
Displays the loop path defines

list loopscopes()
Displays the loop scope defines

list pathtimes()
Displays the path time defines

list sources()
Lists the source files

list srccommands ()
Displays the command list embedded in the loaded executable

list srcloops()
Displays the loop counts embedded in the loaded executable

list srclabels()
Lists the source labels

list allsrclabels()
Lists all the possible locations for source labels

list corestartpoints()
Lists the logical core start points

list corestoppoints()
Lists the logical core stop points

list unknowns <route id>
Displays the list of unknowns for the given route

12.12 print

print summary()
Shows routes summary (verbosity -2|-1]0)

print structure <route id> [node id]

REV B Y 4 MOS

XMOS Timing Analyzer Manual 61/69

Displays the structure for given route/node (verbosity 0[1)

print asm <route id> [node id]
Displays annotated assembly for the given route/node

print src <route id> [node id]
Displays annotated source file(s) for given route/node

print trace <route id> [node id]
Displays instruction trace for the worst case path of the given route/node

print routeinfo <route id>
Shows detailed information for the given route

print nodeinfo <route id> <node id>
Shows detailed information for the given node in the given route

print warnings()
Prints all timing warnings

print distribution <route id> [node id]
Displays time distribution for the given route/node

12.13 pwd

pwd ()
Displays the current working directory

12.14 remove

remove branch <from BRANCH|*> [<to INSTRUCTION|x*>]+
Removes the given from/to references from the branches list

remove tile <tile id|*>
Removes xCORE tile from active set

remove exclusion <ANY|x*>
Removes the given reference (or all if **’) from the list of exclusions

remove functiontime <FUNCTION |*>
Removes the given functon time from the list of defines

remove instructiontime <ENDPOINT|*>
Removes the given instruction time from the list of defines

remove loop <ANY|*>
Removes the given loop count define to the list of defines

REV B Y 4 MOS

XMOS Timing Analyzer Manual 62/69

remove looppath <ANY|x*>
Removes the given loop path count define to the list of defines

remove loopscope <ANY|*>
Removes the given loop scope define to the list of defines

remove pathtime <from ENDPOINT|*> <to ENDPOINT]|*>
Removes the given path time from the list of defines

remove route <route id>
Removes the route with the given id from the current analysis

12.15 scripter

scripter disable <ANY>
Disables a mapping

scripter dump()

Dumps script which represents the current state - also embeds active pragmas into
source

scripter embed <filename>
Embeds the script into the designated file - also embed active pragmas into source

scripter enable <ANY>
Enables a mapping

scripter listrefs()

Lists all references which will be used in the script

scripter rename <ANY> <TO_NAME>
Renames a mapping

12.16 set

set exclusion <route id> <ANY>
Sets an exclusion on the given reference

set functiontime <route id> <FUNCTION> <value> <MODE>
Sets timing requirement for the given function on the given route

set instructiontime <route id> <ENDPOINT> <value> <MODE>
Sets the time taken for the instruction at the given pc

set loop <route id> <ANY> <iterations>
Sets the number of iterations for the loop identified

set looppath <route id> <ANY> <iterations>

REV B Y 4 MOS

XMOS Timing Analyzer Manual 63/69

Sets the number of iterations for the path identified

set loopscope <route id> <ANY> <SCOPE>
Sets the scope of the referenced loop

set pathtime <route id> <from ENDPOINT> <to ENDPOINT> <value> <MODE>
Sets timing requirement for the given path on the given route

set required <route id> <value> <MODE>
Sets the maximum allowed time taken for the given route

12.17 source

source <file name> [args]
Sources the given script file

12.18 status

status()
Displays current status

12.19 version

version()
Displays the version information

12.20 Pragmas

#pragma xta label "name"
Provides a label that can be used to specify timing constraints.

#pragma xta endpoint "name"
Specifies an endpoint. It may appear before an input or output statement.

#pragma xta call "name"
Defines a label for a (function) call point. Use to specify a particular called instance
of a function. For example, if a function contains a loop, the iterations for this
loop can be set to a different value depending on which call point the function was
called from.

#pragma xta command "command"

Allows XTA commands to be embedded into source code. All commands are run
every time the binary is loaded into the XTA. Commands are executed in the order
they occur in the file, but the order between commands in different source files is
not defined.

#pragma xta loop "integer"

REV B Y 4 MOS

XMOS Timing Analyzer Manual 64/69

Applies the given loop XTA iterations to the loop containing the pragma.

12.21 Timing Modes

The available timing modes are:

ns()

nanoseconds
us ()

microseconds
ms ()

milliseconds
MHz ()

megahertz
KHz ()

kilohertz
Hz ()

hertz
cycles()

The core cycle count is the number of scheduled slots that the logical core required

to perform the sequence. The relationship between core cycles and time is a

function of the number of cores currently running and the xCORE tile frequency.
12.22 Loop Scopes

Supported values for scope are:

relative/r()
Iteration number propagates to the enclosing path (Default)

absolute/a()
Absolute number of iterations

12.23 Reference Classes

12.23.1 FUNCTION

FunctionPc ()
Raw program counter specified in the format: 0x*

Function()
Any function

REV B Y 4 MOS

XMOS Timing Analyzer Manual 65/69

12.23.2 BRANCH

EndpointPC()

Raw program counter specified in the format: 0x*
CallPc()

Call specified in the format: 0x*
CallFileLine()

Call specified in the format: ‘file name:line number’
Call()

Call specified using the source level pragma mechanism
Label ()

Any source or assembly level symbol defined with respect to an executable section
CallLabel()

Any source or assembly level symbol defined with respect to an executable section

12.23.3 INSTRUCTION

EndpointPC()
Raw program counter specified in the format: 0x*

FunctionPc()
Raw program counter specified in the format: 0x*

Function()

Any function

Label()
Any source or assembly level symbol defined with respect to an executable section

12.23.4 ENDPOINT

EndpointPC()
Raw program counter specified in the format: 0x*

EndpointFileLine()
Endpoint specified in the format: ‘file name:line number’

Endpoint ()
Endpoint specified using the source level pragma mechanism

CallPc()
Call specified in the format: Ox*

REV B Y 4 MOS

XMOS Timing Analyzer Manual 66/69

CallFileLine()
Call specified in the format: ‘file name:line number’

Call()
Call specified using the source level pragma mechanism
Label()
Any source or assembly level symbol defined with respect to an executable section
CallLabel()
Any source or assembly level symbol defined with respect to an executable section
12.23.5 ANY
SrcLabelPc()
Raw program counter specified in the format: 0x*
EndpointPC()
Raw program counter specified in the format: 0x*
EndpointFileLine()
Endpoint specified in the format: ‘file name:line number’
Endpoint ()
Endpoint specified using the source level pragma mechanism
CallPc()
Call specified in the format: 0x*
CallFileLine()
Call specified in the format: ‘file name:line number’
Call()
Call specified using the source level pragma mechanism
SrcLabelFileLine()
Source label specified in the format: ‘file name:line number’
SrcLabel ()
Source label specified using the source level pragma mechanism
Label()
Any source or assembly level symbol defined with respect to an executable section
CallLabel()

Any source or assembly level symbol defined with respect to an executable section

REV B Y 4 MOS

XMOS Timing Analyzer Manual 67/69

12.23.6 FUNCTION_WITH_EVERYTHING

EverythingReference ()
Matches everything: **’

FunctionPc()

Raw program counter specified in the format: 0x*

Function()

Any function

12.23.7 BRANCH_WITH_EVERYTHING

EverythingReference ()
Matches everything: “*’

EndpointPC()

Raw program counter specified in the format: 0x*
CallPc()

Call specified in the format: 0x*
CallFileLine()

Call specified in the format: ‘file name:line number’
Call()

Call specified using the source level pragma mechanism
Label()

Any source or assembly level symbol defined with respect to an executable section
CallLabel()

Any source or assembly level symbol defined with respect to an executable section

12.23.8 INSTRUCTION_WITH_EVERYTHING

EverythingReference ()
Matches everything: “*’

EndpointPC()
Raw program counter specified in the format: 0x*

FunctionPc()

Raw program counter specified in the format: 0x*

Function()
Any function

REV B Y 4 MOS

XMOS Timing Analyzer Manual 68/69

Label ()
Any source or assembly level symbol defined with respect to an executable section

12.23.9 ENDPOINT_WITH_EVERYTHING

EverythingReference ()
Matches everything: **’

EndpointPC()

Raw program counter specified in the format: 0x*
EndpointFileLine ()

Endpoint specified in the format: ‘file name:line number’
Endpoint ()

Endpoint specified using the source level pragma mechanism
CallPc()

Call specified in the format: 0x*
CallFileLine()

Call specified in the format: ‘file name:line number’
Call()

Call specified using the source level pragma mechanism
Label()

Any source or assembly level symbol defined with respect to an executable section
CallLabel()

Any source or assembly level symbol defined with respect to an executable section

12.23.10 ANY_WITH_EVERYTHING

EverythingReference ()
Matches everything: “*’

SrcLabelPc()
Raw program counter specified in the format: 0x*

EndpointPC()
Raw program counter specified in the format: 0x*

EndpointFileLine ()
Endpoint specified in the format: ‘file name:line number’

Endpoint ()
Endpoint specified using the source level pragma mechanism

REV B Y 4 MOS

XMOS Timing Analyzer Manual 69/69

CallPc()

Call specified in the format: 0x*
CallFileLine()

Call specified in the format: ‘file name:line number’
Call()

Call specified using the source level pragma mechanism
SrcLabelFileLine()

Source label specified in the format: ‘file name:line number’
SrcLabel ()

Source label specified using the source level pragma mechanism
Label()

Any source or assembly level symbol defined with respect to an executable section
CallLabel()

Any source or assembly level symbol defined with respect to an executable section

REV B Y 4 MOS

13Tool Limitations

Limitations of the current XTA are:
Recursion: the tool does not process any program which contains recursion.

Par: the tool only times one logical core at a time. The code has to be timed on
each core manually in order to determine the overall worst-case timing. The tool
gives a warning if code causing parallel execution is detected.

Limited support in C/C++ compilers: the compilers support XTA source labels,
call labels and endpoints in XC code only, not in C or C++.

Loop iterations: the compiler only performs loop analysis with optimizations
turned on (-01 and greater). Therefore, with optimization turned off and for the
cases where the compiler cannot determine a static loop count, the user has to
specify them.

REV B Y 4 MOS

14 Code Reference Grammar

A code reference constructed of a back trail and a base reference of the form:

code-ref = back-trail base-ref

back-trail u= base-ref
| base-ref , back-trail

base-ref == pc-ref

| label-ref
| function-ref
| endpoint-ref
| srclabel-ref
|

call-ref
pc-ref = pc-class hex-constant
label-ref ©:= label-class label-string
function-ref == function-class function-name

| function-class hex-constant
endpoint-ref = endpoint-class file-line

| endpoint-class endpoint-label

| endpoint-class hex-constant

srclabel-ref 2= srclabel-class label-string

call-ref u:= call-class label-string
| call-class hex-constant

pc-class =

| PC:
label-class =

| LABEL:
functionclass — ::=

| FUNCTION:
endpointclass =

| ENDPOINT:

REV B Y 4 MOS

XMOS Timing Analyzer Manual 72/69

srclabelclass =
| SRCLABEL:
call-class u=
| CALL:
file-line == file-name : integer-constant

XMOS

Copyright © 2013, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

XMOS and the XMOS logo are registered trademarks of Xmos Ltd. in the United Kingdom and other countries,
and may not be used without written permission. All other trademarks are property of their respective owners.
Where those designations appear in this book, and XMOS was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

REV B

	Introduction
	Defining Timing-Critical Code
	Using The Tool
	Loading a Binary
	Routes
	Endpoints
	Adding Endpoints To Source
	Timing Between Endpoints
	Timing Functions
	Timing Loops
	Setting Timing Requirements

	Viewing Results
	Route IDs
	Node IDs
	Summary
	Violation
	Slack

	Structure
	Source Code Annotation
	Instruction Traces
	Fetch no-ops
	Scaling Results
	Unknowns

	Refining Timing Results
	Exclusions
	Loop Iterations
	Loop Path Iterations
	Loop Scope
	Instruction Times
	Function Times
	Path Times
	Active Tiles
	Node Frequency
	Number Of Logical Cores

	Program Structure
	Compiling For XTA
	Structural Nodes
	Identifying Nodes: Code References
	Source File-Line
	Source Label
	Call File-Line
	Call Label
	Endpoint File-Line
	Endpoint Label
	Label
	Function
	Program Counter (PC)

	Reference Classes
	ENDPOINT
	CALL
	FUNCTION
	LABEL
	PC
	Forcing a Specific Type

	Back Trails
	Inlining

	Scope of References

	When Code Analysis Succeeds
	Multiple Route Creation
	Endpoints Exist On Multiple xCORE Tiles
	From Endpoint Can Be Reached In Multiple Ways
	Route Specific Exclusions Exist
	Route Specific Branches Exist
	Looppoint Within Multiple Loops

	When Code Analysis Fails
	Endpoint Not Found
	Invalid Reference
	Not Found On Active Tiles
	Endpoint In Data Section

	Out Of Memory
	Restrict The Route
	Increase The JVM Size

	When Code Fails To Time
	Unresolved
	Recursion
	Infinite
	Illegal

	Automating The Process
	Creating a Script
	Generating A Script
	Writing A Script

	Running a Script
	During Compilation
	Running From Within xTIMEcomposer Studio
	Batch Mode

	Embedding Commands Into Source
	Advanced Scripting Via the Jython Interface
	Load Methods
	Route Creation/Deletion Methods
	Add/Remove Methods
	Set Methods
	Get Methods
	Config Methods

	GUI Reference
	Views
	Routes View
	Disassembly View
	Console View
	Visualizations View
	Info View
	Problems View
	Files View

	Editors

	Working With Assembly
	Assembly Directives
	Branch Table Example
	Core Start/Stop Example

	Console Command Reference
	add
	analyze
	config
	clear
	debug
	echo
	exit
	help
	history
	load
	list
	print
	pwd
	remove
	scripter
	set
	source
	status
	version
	Pragmas
	Timing Modes
	Loop Scopes
	Reference Classes
	FUNCTION
	BRANCH
	INSTRUCTION
	ENDPOINT
	ANY
	FUNCTION_WITH_EVERYTHING
	BRANCH_WITH_EVERYTHING
	INSTRUCTION_WITH_EVERYTHING
	ENDPOINT_WITH_EVERYTHING
	ANY_WITH_EVERYTHING

	Tool Limitations
	Code Reference Grammar

