
xTIMEcomposer Simulator Tutorial

IN THIS DOCUMENT

· Introduction

· Open the simulator example

· Output a VCD trace file

· Relate I/O signals to source code

· Connect ports in a loopback

· What to read next

1 Introduction

xTIMEcomposer includes a cycle-based simulator that you can use to verify the
behaviour of programs without the need for target hardware. xTIMEcomposer
also includes a waveform viewer for visualising I/O data signals generated by the
simulator, and relating the signals back to the source code.

This tutorial shows you how to:

· Run a program on the simulator and view the processor instruction trace

· Save the I/O data signal generated by the simulator and view it in the
waveform viewer

· Relate the trace data to the source code

· Connect two ports together to create a loopback

2 Open the simulator example

This part of the tutorial shows you how to create a project in xTIMEcomposer and
output a simulator trace to the Console.

2.1 Create a project

Before writing any code, you need a project to store your files in. To create a new
project follow these steps:

1. Choose File > New > XDE Project to open the New XDE Project dialog.

2. In Project Name, enter a name such as simulator.

3. In Target Hardware, select the option XC-1A Board. You don’t need this board
to complete the tutorial.

Publication Date: 2012/10/29 Document Number: X3968C

XMOS © 2012, All Rights Reserved



xTIMEcomposer Simulator Tutorial 2/11

4. In Application Software, select the option Empty XC File.

5. Click Finish.

2.2 Add the code

The program below implements a UART interface:

/*
* ==============================================================
* Name : uart -loopback.xc
* Description : UART loopback example
* ==============================================================
*/

#include <xs1.h>
#include <print.h>
#include <platform.h>

#define NUM_BYTES 3
#define BIT_RATE 115200
#define BIT_TIME XS1_TIMER_HZ / BIT_RATE

void txBytes(out port txd , char bytes[], int numBytes);
void txByte(out port txd , int byte);
void rxBytes(in port rxd , char bytes[], int numBytes);
char rxByte(in port rxd);

out port txd = XS1_PORT_1H;
in port rxd = XS1_PORT_1I;

int main()
{

char transmit [] = { 0b00110101 , 0b10101100 , 0b11110001 };
char receive [] = { 0, 0, 0 };

// Drive port high (inactive) to begin
txd <: 1;

par {
txBytes(txd , transmit , NUM_BYTES);
rxBytes(rxd , receive , NUM_BYTES);

}

X3968C



xTIMEcomposer Simulator Tutorial 3/11

return 0;
}

void txBytes(out port txd , char bytes[], int numBytes)
{

for (int i = 0; i < numBytes; i += 1) {
txByte(txd , bytes[i]);

}
printstrln("txDone"); // Transmit_Done

}

void txByte(out port txd , int byte)
{

unsigned time;

// Output start bit
txd <: 0 @ time; // Endpoint A

// Output data bits
for (int i = 0; i < 8; i++) {

time += BIT_TIME;
txd @ time <: >> byte; // Endpoint B

}

// Output stop bit
time += BIT_TIME;
txd @ time <: 1; // Endpoint C

// Hold stop bit
time += BIT_TIME;
txd @ time <: 1; // Endpoint D

}

void rxBytes(in port rxd , char bytes[], int numBytes)
{

for (int i = 0; i < numBytes; i += 1) {
bytes[i] = rxByte(rxd);

}

printstrln("rxDone");
for (int i = 0; i < NUM_BYTES; i++) {

printhexln(bytes[i]);
}

}

char rxByte(in port rxd)
{

unsigned byte , time;

// Wait for start bit
rxd when pinseq (0) :> void @ time;
time += BIT_TIME / 2;

// Input data bits

X3968C



xTIMEcomposer Simulator Tutorial 4/11

for (int i = 0; i < 8; i++) {
time += BIT_TIME;
rxd @ time :> >> byte;

}

// Input stop bit
time += BIT_TIME;
rxd @ time :> void;

return (byte >> 24);
}

Copy and paste the code into your project, and then choose File > Save to
save your changes to file.

2.3 Examine the code

The source code contains a transmitter thread and receiver thread running con-
currently. The UART is configured to operate at a data rate of 115200 bits/s. The
transmitter outputs a byte (0b00110101) to a 1-bit port and inputs a byte from
another 1-bit port.

TXD
start
bit

stop
bit

8.68µs 8.68µs 8.68µs 8.68µs 8.68µs 8.68µs 8.68µs 8.68µs 8.68µs 8.68µs

B0 B1 B2 B3 B5 B6 B7B4

2.4 Build and run your project

To build and run your project, follow these steps:

1. In the Project Explorer, click your project to select it, and then choose the

menu option Project > Build Project .

xTIMEcomposer displays its progress in the Console. When the build is com-
plete, xTIMEcomposer adds the compiled binary file to the application subfolder
bin/Debug.

X3968C



xTIMEcomposer Simulator Tutorial 5/11

2. Choose Run > Run Configurations.

3. In the Run Configurations dialog, in the left panel, double-click XCore Appli-
cation.

4. In the right panel, in Name, enter the name simulate.

5. In Project, ensure that your project is displayed. If not, click Browse to open
the Project Selection dialog, select your project, and then click OK.

6. In Device options, in Run on, select the option simulator.

7. Select the Simulator tab.

8. Select the Dump simulator trace option.

9. Click Run to save your configuration and run it.

xTIMEcomposer loads the application binary into the simulator, displaying its
progress in the Console.

For details of the output format see the xTIMEcomposer User Guide1.

3 Output a VCD trace file

The Simulator can output a VCD file that you can then view using the integrated
waveform viewer.

1http:/www.xmos.com/published/tools-user-guide?version=latest

X3968C

http:/www.xmos.com/published/tools-user-guide?version=latest


xTIMEcomposer Simulator Tutorial 6/11

3.1 Output a VCD file

1. Select Run > Run Configurations and select the configuration you created
previously.

2. Select the Simulator tab.

3. Click Enable signal tracing.

4. Click Add.

5. Select the Ports checkbox. Leave the Tile option set to tile[0].

6. Click Run.

A VCD file is created by the simulator and appears in the Project Explorer.

3.2 Display the I/O signals generated by the program

1. Double-click the VCD file in the Project Explorer.

Two additional views are opened in the C/XC perspective: Waves and Signals.
The Signals view contains a list of all the ports and signals for the target device.

X3968C



xTIMEcomposer Simulator Tutorial 7/11

This defaults to a hierarchical view of the traced signals, but can be changed to

a flat view by clicking on the Flat/Hierarchical button on the Signals view
toolbar.

2. Expand the Ports node in the Signals tree.

3. Expand the XS1_PORT_1H node and drag the tile[0]_XS1_PORT_1H
(PORT_UART_TX) signal into the Waves view.

4. Do the same for the tile[0]_XS1_PORT_1I(PORT_UART_RX) signal.

5. Click the Zoom Fit icon in the Waves view toolbar to view the full waveforms.

The trace for PORT_1H shows that its pin starts high initially and is driven low
when the program is first executed. It waits for the bit time to elapse (calculated
by dividing the XS1 timer by the UART bit rate) then outputs the least significant
bit of data, waits for the bit time to elapse again and then outputs the next bit.
When the last bit has been output the signal is driven high to indicate the stop
bit.

6. Move the mouse over the Waves view. The current position of the cursor
is displayed (in nanoseconds) in the left numerical control at the top of the
window.

7. Click in the Waves view. The red marker is drawn at the position the mouse
is clicked. Its position is displayed (in nanoseconds) in the center numerical
control at the top of the window.

4 Relate I/O signals to source code

This part of the tutorial shows you how to relate signals in the Waves view to the
source code.

4.1 Identify the output statements in the source code

1. Move the cursor over the PORT_1H wave. As you move the cursor along the
signal it changes to a pointing hand, indicating that the signal corresponds to
an output statement in the source code.

2. Double-click the PORT_1H signal after it is first driven low.

The output statement txd <: 0 @ time; in the function txByte is highlighted
in the editor indicating that it is responsible for the initial transition from high
to low.

3. Double-click the PORT_1H signal after it has been driven high. The output
statement txd @ time <: >> byte; is now highlighted, indicating that it is
responsible for the value driven on the pin at this time.

X3968C



xTIMEcomposer Simulator Tutorial 8/11

4. Select the PORT_1H signal in the Waves signal list and click the waveform at the
start of the signal to set the marker.

5. Click the Next icon in the Waves toolbar to move to the next low/high
transition.

The code responsible for the transition is highlighted in the Editing view.

6. Click the Next icon several times to move along the signal highlighting the code
responsible for each transition as you move.

4.2 Identify a specific signal transition

The Wave view lets you identify specific transitions along the signal.

1. Right-click on the PORT_1H signal in the Waves signal list and select Search for
transition.

2. Enter 1 in the Transition Value and click Find.

X3968C



xTIMEcomposer Simulator Tutorial 9/11

The cursor jumps to the first low/high transition.

3. Click Find again. The cursor goes to the next low/high transition.

4. Change the Transition Value to 0 and click Find.

The cursor moves to the next high/low transition.

5. Change the Transition Value back to 1 and click Find.

The cursor continues to search forward from the current position until it gets to
the final low/high transition.

4.3 Organise the signals and display format

You can organise the signals in the Waves view and change the display format, to
fit your requirements.

1. Right-click on the PORT_1H signal in the Waves window and select Data Format
from the pop-up list.

2. Select the Ascii display value.

X3968C



xTIMEcomposer Simulator Tutorial 10/11

3. Right-click on the PORT_1I signal in the list and select Add Separator from the
pop-up list.

4. Enter a name for the separator (for example UART Transmit) and click OK.

A blank grey separator is added above the signal.

5. Click on the separator and drag it to the top of the signal list.

6. Click-and-drag the PORT_1H signal so that it is below PORT_1I, which is below
the separator.

4.4 Save the Wave window configuration

Once you have organised the signals and separator, you can save the configuration
to a Settings file.

1. Click the Write Session File icon in the Wave window toolbar.

2. Enter a name and location for the file and click Save.

Your settings are saved to the workspace.

You can reload the configuration at a future time using the Load Settings icon

.

5 Connect ports in a loopback

To verify that a value is passed correctly from one pin to another (in this example
you can check that the byte 0b00110101 output from 1H is input to 1I) you can
connect the pins together in a loopback. The link is specified as a pair of pins, one
for each end of the connection.

5.1 Set up a loopback

1. Open the Run Configuration.

2. Select the Simulator tab, and the Loopback tab in the Plugins box.

3. Select Enable pin connections.

4. Click Add.

X3968C



xTIMEcomposer Simulator Tutorial 11/11

5. Select the properties for the start and end nodes.

Node Tile Port Offset Width

from Tile[0] XS1_PORT_1H 0 1

to Tile[0] XS1_PORT_1I 0 1

··6. Click Apply and Run.

5.2 Reload the wave signals

1. Select the Signals view in the C/XC perspective.

2. Click the Reload icon in the top right corner of the window to reload the
current VCD file.

3. The Waves view now shows that as the byte data is output from PORT_1H, it is
input to PORT_1I at the same time.

6 What to read next

Congratulations you have now finished this introduction to the XMOS Simulator.
For more information on using the simulator please see the xTIMEcomposer User
Guide2.

We also recommend that you try the xTIMEcomposer Studio tutorial, which shows
how to create an project using xSOFTip and use it in the Simulator. See Help >
Tutorials > xTIME Composer Tutorial3.

Copyright © 2012, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

2http:/www.xmos.com/published/tools-user-guide?version=latest
3http://www.xmos.com/published/xtimecomposer-studio-tutorial?automate=OpenInNewTab&tabname=xTutorial

X3968C

http:/www.xmos.com/published/tools-user-guide?version=latest
http://www.xmos.com/published/xtimecomposer-studio-tutorial?automate=OpenInNewTab&tabname=xTutorial

	Introduction
	Open the simulator example
	Output a VCD trace file
	Relate I/O signals to source code
	Connect ports in a loopback
	What to read next

