
XCORE-VOICE SOLUTION - Programming Guide

Publication Date: 2024/12/18
Document Number: v2.3.0

XCORE-VOICE SOLUTION - Programming Guide

IN THIS DOCUMENT

1 Product Description . 2
2 Key Features . 3
3 Obtaining the Hardware . 4
4 Obtaining the Software . 4

4.1 Development Tools . 4
4.2 Application Demonstrations . 5
4.3 Source Code . 5

5 Prerequisites . 5
5.1 Windows . 5
5.2 macOS . 6

6 Example Designs . 6
6.1 Far-field Voice Local Command . 6
6.2 Low Power Far-field Voice Local Command . 30
6.3 Far-field Voice Assistant . 57
6.4 PDM Microphone Aggregator Example . 85
6.5 ASRC Application . 91

7 Speech Recognition Ports . 102
8 Memory and CPU Requirements . 103

8.1 Memory . 103
8.2 CPU . 103

9 How-Tos . 104
9.1 Changing the input and output sample rate . 104
9.2 I2S AEC reference input audio & USB processed audio output 104

10 Frequently Asked Questions . 105
10.1 CMake hides XTC Tools commands . 105
10.2 fatfs_mkimage: not found . 105
10.3 FFD pdm_rx_isr() Crash . 105
10.4 Debugging low-power . 106
10.5 xcc2clang.exe: error: no such file or directory 106

11 Licenses . 106
11.1 XMOS . 106
11.2 Third-Party . 106

1 Product Description

The XCORE-VOICE Solution consists of example designs and a C-based SDK for the de-
velopment of audio front-end applications to support far-field voice use cases on the
xcore.ai family of chips (XU316). The XCORE-VOICE examples are currently based on
FreeRTOS or bare-metal, leveraging the flexibility of the xcore.ai platform and providing
designers with a familiar environment to customize and develop products.

XCORE-VOICE example designs include turn-key solutions to enable easier product de-
velopment for smart home applications such as light switches, thermostats, and home
appliances. xcore.ai’s unique architecture providing powerful signal processing and ac-
celerated AI capabilities combined with the XCORE-VOICE framework allows designers
to incorporate keyword, event detection, or advanced local dictionary support to create a
complete voice interface solution. Bridging designs including PDM microphone to host
aggregation are also included showcasing the use of xcore.ai as an interfacing and bridg-
ing solution for deployment in existing systems.

The C SDK is composed of the following components:

· Peripheral IO libraries including; UART, I2C, I2S, SPI, QSPI, PDMmicrophones, and USB.
These libraries support bare-metal and RTOS application development.

2

XCORE-VOICE SOLUTION - Programming Guide

· Libraries core to DSP applications, including vectorized math and voice processing
DSP. These libraries support bare-metal and RTOS application development.

· Libraries for speech recognition applications. These libraries support bare-metal and
RTOS application development.

· Libraries that enable multi-core FreeRTOS development on xcore including a wide ar-
ray of RTOS drivers and middleware.

· Pre-build and validated audio processing pipelines.

· Code Examples - Examples showing a variety of xcore features based on bare-metal
and FreeRTOS programming.

· Documentation - Tutorials, references and API guides.

2 Key Features

The XCORE-VOICE Solution takes advantage of the flexible software-defined xcore-ai ar-
chitecture to support numerous far-field voice use cases through the available example
designs and the ability to construct user-defined audio pipeline from the SWcomponents
and libraries in the C-based SDK.

These include:

Voice Processing components

· Two PDMmicrophone interfaces

· Digital signal processing pipeline

· Full duplex, stereo, Acoustic Echo Cancellation (AEC)

· Reference audio via I2S with automatic bulk delay insertion

· Point noise suppression via interference canceller

· Switchable stationary noise suppressor

· Programmable Automatic Gain Control (AGC)

3

XCORE-VOICE SOLUTION - Programming Guide

· Flexible audio output routing and filtering

· Support for Sensory, Cyberon or other 3rd party Automatic Speech Recognition (ASR)
software

Device Interface components

· Full speed USB2.0 compliant device supporting USB Audio Class (UAC) 2.0

· Flexible Peripheral Interfaces

· Programmable digital general-purpose inputs and outputs

Example Designs utilizing above components

· Far-Field Voice Local Command

· Low Power Far-Field Voice Local Command

· Far-Field Voice Assistance

Firmware Management

· Boot from QSPI Flash

· Default firmware image for power-on operation

· Option to boot from a local host processor via SPI

· Device Firmware Update (DFU) via USB or I2C

Power Consumption

· FFD/FFVA: 300-350mW (Typical)

· Low Power FFD: 110mW (Full-Power), 54mW (Low-Power), <50mWpossible with Sen-
sory’s LPSD under certain conditions.

3 Obtaining the Hardware

The XK-VOICE-L71 DevKit and Hardware Manual can be obtained from the XK-VOICE-L71
product information page.

The XK-VOICE-L71 is based on the: XU316-1024-QF60A

The XCORE-AI-EXPLORER DevKit and Hardware Manual used in the Microphone Aggre-
gation example can be obtained from the XK-VOICE-L71 product information page.

Learn more about the The XMOS XS3 Architecture

4 Obtaining the Software

4.1 Development Tools

It is recommended that you download and install the latest release of the XTC Tools.
XTC Tools 15.3.0 or newer are required. If you already have the XTC Toolchain installed,
you can check the version with the following command:
xcc --version

4

https://www.xmos.com/xk-voice-l71
https://www.xmos.com/file/xu316-1024-qf60b-xcore_ai-datasheet?version=latest
https://www.xmos.com/xk-voice-l71
https://www.xmos.com/download/The-XMOS-XS3-Architecture.pdf
https://www.xmos.com/software/tools/

XCORE-VOICE SOLUTION - Programming Guide

4.2 Application Demonstrations

If you only want to run the example designs, pre-built firmware and other software can
be downloaded from the XCORE-VOICE product information page.

4.3 Source Code

If you wish to modify the example designs, a zip archive of all source code can be down-
loaded from the XCORE-VOICE product information page.

See the Programming Guide for information on:

· Prerequisites

· Instructions for building, running, and debugging the example designs

· Details on the software design and source code

4.3.1 Cloning the Repository

Alternatively, the source code can be obtained by cloning the public GitHub repository.

Note: Cloning requires a GitHub account configured with SSH key authentication.

Run the following git command to clone the repository and all submodules:
git clone --recurse-submodules git@github.com:xmos/sln_voice.git

If you have previously cloned the repository or downloaded a zip file of source code, the
following commands can be used to update and fetch the submodules:
git pull
git submodule update --init --recursive

5 Prerequisites

It is recommended that you download and install the latest release of the XTC Tools.
XTC Tools 15.3.0 or newer are required for building, running, flashing and debugging the
example applications.

CMake 3.21 or newer and Git are also required for building the example applications.

5.1 Windows

A standard C/C++ compiler is required to build applications for the host PC. Windows
users may use Build Tools for Visual Studio command-line interface.

It is recommended to use Ninja as the build system for native Windows firmware builds.
To installNinja follow install instructions at https://ninja-build.org/ or onWindows install
with winget by running the following commands in PowerShell:
Install
winget install Ninja-build.ninja
Reload user Path
$env:Path=[System.Environment]::GetEnvironmentVariable("Path","User")

XCORE-VOICE host builds should also work using other Windows GNU development en-
vironments like GNU Make, MinGW or Cygwin.

5

https://www.xmos.com/xcore-voice
https://www.xmos.com/xcore-voice
https://github.com
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/about-ssh
https://www.xmos.com/software/tools/
https://cmake.org/download/
https://git-scm.com/
https://docs.microsoft.com/en-us/cpp/build/building-on-the-command-line?view=msvc-170#download-and-install-the-tools
https://ninja-build.org/

XCORE-VOICE SOLUTION - Programming Guide

5.1.1 libusb

The DFU feature of XCORE-VOICE requires dfu-util.

5.2 macOS

A standard C/C++ compiler is required to build applications for the host PC. Mac users
may use the Xcode command-line tools.

6 Example Designs

6.1 Far-field Voice Local Command

6.1.1 Overview

This is the far-field voice local command (FFD) example design. Three examples are
provided: all examples include speech recognition and a local dictionary. One example
uses the Sensory TrulyHandsfree™ (THF) libraries, and the other ones use the Cyberon
DSPotter™ libraries. The two examples with the Cyberon DSPotter™ libraries differ in the
audio source fed into the intent engine. One example uses the audio source from the
microphone array, and the other uses the audio source from the I2S interface.

The examples using the microphone array as the audio source include an audio pipeline
with the following stages:

1. Interference Canceler (IC) + Voice To Noise Ratio Estimator (VNR)

2. Noise Suppressor (NS)

3. Adaptive Gain Control (AGC)

The FFD examples provide several options to inform the host of a possible intent de-
tected by the intent engine. The device can notify the host by:

· sending the intent ID over a UART interface upon detecting the intent

· sending the intent ID over an I2C master interface upon detecting the intent

· allowing the host to poll the last detected intent ID over the I2C slave interface

· listening to an audio message over an I2S interface

When a wakeword phrase is detected followed by a command phrase, the application
will output an audio response and a discrete message over I2C and UART.

Sensory’s THF and Cyberon’s DSpotter™ libraries ship with an expiring development li-
cense. The Sensory one will suspend recognition after 11.4 hours or 107 recognition
events, and the Cyberon one will suspend recognition after 100 recognition events. After
the maximum number of recognitions is reached, a device reset is required to resume
normal operation. To perform a reset, either power cycle the device or press the SW2
button.

More information on the Sensory speech recognition library can be found here: Speech
Recognition - Sensory.

More information on the Cyberon speech recognition library can be found here: Speech
Recognition - Cyberon

6

https://dfu-util.sourceforge.net/

XCORE-VOICE SOLUTION - Programming Guide

6.1.2 Supported Hardware

This example application is supported on the XK-VOICE-L71 board.

6.1.2.1 Setting up the Hardware This example design requires an XTAG4 and XK-
VOICE-L71 board.

xTAG The xTAG is used to program and debug the device

Connect the xTAG to the debug header, as shown below.

Connect the micro USB XTAG4 and micro USB XK-VOICE-L71 to the programming host.

7

https://www.xmos.com/xk-voice-l71

XCORE-VOICE SOLUTION - Programming Guide

Speakers (OPTIONAL) This example application features audio playback re-
sponses. Speakers can be connected to the LINE OUT on the XK-VOICE-L71.

6.1.3 Configuring the Firmware

The default application performs as described in theOverview. There are numerous com-
pile time options that can be added to change the example design without requiring code
changes. To change the options explained in the table below, add the desired configu-
ration variables to the APP_COMPILE_DEFINITIONS cmake variable in the .cmake file
located in the examples/ffd/ folder.

If options are changed, the application firmware must be rebuilt.

Table 1: FFD Compile Options
Compile Option Description De-

fault
Value

appconfINTENT_ENABLED Enables/disables the intent en-
gine, primarily for debug.

1

continues on next page

8

XCORE-VOICE SOLUTION - Programming Guide

Table 1 – continued from previous page

Compile Option Description De-
fault
Value

appconfINTENT_RESET_DELAY_MS Sets the period after the wake up
phrase has been heard for a valid
command phrase

5000

appconfINTENT_RAW_OUTPUT Set to 1 to output all keywords
found, skipping the internal wake
up and command state machine

0

appconfAUDIO_PLAYBACK_ENABLED Enables/disables the audio play-
back command response

1

appconfIN-
TENT_UART_OUTPUT_ENABLED

Enables/disables the UART intent
message

1

appconfIN-
TENT_UART_DEBUG_INFO_ENABLED

Enables/disables the UART intent
debug information

0

appconfI2C_MASTER_DAC_ENABLED Enables/disables configuring the
DAC over I2C master

1

appconfIN-
TENT_I2C_MASTER_OUTPUT_ENABLED

Enables/disables sending the in-
tent message over I2C master

1

appconfIN-
TENT_I2C_MASTER_DEVICE_ADDR

Sets the address of the I2C de-
vice receiving the intent via the I2C
master interface

0x01

appconfIN-
TENT_I2C_SLAVE_POLLED_ENABLED

Enables/disables allowing an-
other device to poll the intent
message via I2C slave

0

appconfI2C_SLAVE_DEVICE_ADDR Sets the address of the I2C de-
vice receiving the intent via the I2C
slave interface

0x42

appconfINTENT_I2C_REG_ADDRESS Sets the address of the I2C reg-
ister to store the intent message,
this value can be read via the I2C
slave interface

0x01

appconfUART_BAUD_RATE Sets the baud rate for the UART tx
intent interface

9600

appconfUSE_I2S_INPUT Replace I2S audio source instead
of the microphone array audio
source.

0

appconfI2S_MODE Select I2S mode, sup-
ported values are app-
confI2S_MODE_MASTER and
appconfI2S_MODE_SLAVE

mas-
ter

appconfI2S_AUDIO_SAMPLE_RATE Select the sample rate of the I2S
interface, supported values are
16000 and 48000

16000

appconfRE-
COVER_MCLK_I2S_APP_PLL

Enables/disables the recovery of
the MCLK from the Software PLL
application; this removes the need
to use an external MCLK.

0

continues on next page

9

XCORE-VOICE SOLUTION - Programming Guide

Table 1 – continued from previous page

Compile Option Description De-
fault
Value

appconfIN-
TENT_TRANSPORT_DELAY_MS

Sets the delay between host wake
up requested and I2C and UART
keyword code transmission

50

appconfINTENT_QUEUE_LEN Sets the maximum number of de-
tected intents to hold while wait-
ing for the host to wake up

10

appconfIN-
TENT_WAKEUP_EDGE_TYPE

Sets the host wake up pin GPIO
edge type. 0 for rising edge, 1 for
falling edge

0

appconfAU-
DIO_PIPELINE_SKIP_IC_AND_VNR

Enables/disables the IC and VNR 0

appconfAUDIO_PIPELINE_SKIP_NS Enables/disables the NS 0
appconfAUDIO_PIPELINE_SKIP_AGC Enables/disables the AGC 0

Note: The example_ffd_i2s_input_cyberon has different default values from
the ones in the table above. The list of updated values can be found in the
APP_COMPILE_DEFINITIONS list in examples\ffd\ffd_i2s_input_cyberon.
cmake.

6.1.3.1 Configuring the I2C interfaces The I2C interfaces are used to configure the
DAC and to communicate with the host. The I2C interface can be configured as amaster
or a slave. The DAC must be configured at bootup via the I2C master interface. The I2C
master is used when the FFD example asynchronously sends intent messages to the
host. The I2C slave is used when the host wants to read intent messages from the FFD
example through polling.

Note: The I2C interface cannot operate as both master and slave simultaneously. The
FFD example design uses the I2Cmaster interface to configure the DAC at device initial-
isation. However, if the host reads intent messages from the FFD example using the I2C
slave interface, the I2C master interface will be disabled after the DAC configuration is
complete.

To send the intent ID via the I2C master interface when a command is detected, set the
following variables:

· appconfINTENT_I2C_MASTER_OUTPUT_ENABLED to 1.

· appconfINTENT_I2C_MASTER_DEVICE_ADDR to the desired address used by the
I2C slave device.

· appconfINTENT_I2C_SLAVE_POLLED_ENABLED to 0, this will disable the I2C
slave interface.

To configure the FFD example so that the host can poll for the intent via the I2C slave
interface, set the following variables:

10

XCORE-VOICE SOLUTION - Programming Guide

· appconfINTENT_I2C_SLAVE_POLLED_ENABLED to 1.

· appconfI2C_SLAVE_DEVICE_ADDR to the desired address used by the I2Cmaster
device.

· appconfINTENT_I2C_REG_ADDRESS to the desired register read by the I2Cmaster
device.

· appconfINTENT_I2C_MASTER_OUTPUT_ENABLED to 0, this will disable the I2C
master interface after initialization.

The handling of the I2C slave registers is done in the examples\ffd\src\
i2c_reg_handling.c file. The variable appconfINTENT_I2C_REG_ADDRESS is
used in the callback function read_device_reg().

6.1.3.2 Configuring the I2S interface The I2S interface is used to play the audio com-
mand response to the DAC, and/or to receive the audio samples from the host. The I2S
interface can be configured as either a master or a slave. To configure the I2S interface,
set the following variables:

· appconfI2S_ENABLED to 1.

· appconfI2S_MODE to the desired mode, either appconfI2S_MODE_MASTER or
appconfI2S_MODE_SLAVE.

· appconfI2S_AUDIO_SAMPLE_RATE to the desired sample rate, either 16000 or
48000.

· appconfRECOVER_MCLK_I2S_APP_PLL to 1 if an external MCLK is not available,
otherwise set it to 0.

· appconfAUDIO_PLAYBACK_ENABLED to 1, if the intent audio is to be played back.

· appconfUSE_I2S_INPUT to 1, if the I2S audio source is to be used instead of the
microphone array audio source.

6.1.4 Deploying the Firmware with Linux or macOS

This document explains how to deploy the software using CMake and Make.

Note: In the commands below <speech_engine> can be either sensory or
cyberon, depending on the choice of the speech recognition engine and model.

Note: The Cyberon speech recognition engine is integrated in two examples. The
example_ffd_cyberon use the microphone array as the audio source, and the
example_ffd_i2s_input_cyberon uses the I2S interface as the audio source. In
the rest of this section, we use only the example_ffd_<speech_engine> as an ex-
ample.

6.1.4.1 Building the Host Applications This application requires a host application to
create the flash data partition. Run the following commands in the root folder to build
the host application using your native Toolchain:

11

XCORE-VOICE SOLUTION - Programming Guide

Note: Permissions may be required to install the host applications.

cmake -B build_host
cd build_host
make install

The host applicationswill be installed at /opt/xmos/bin, andmay bemoved if desired.
You may wish to add this directory to your PATH variable.

6.1.4.2 Building the Firmware After having your python environment activated, run
the following commands in the root folder to build the firmware:
pip install -r requirements.txt
cmake -B build --toolchain=xmos_cmake_toolchain/xs3a.cmake
cd build
make example_ffd_<speech_engine>

6.1.4.3 Running the Firmware Before running the firmware, the filesystemandmodel
must be flashed to the data partition.

Within the root of the build folder, run:
make flash_app_example_ffd_<speech_engine>

After this command completes, the application will be running.

After flashing the data partition, the application can be run without reflashing. If changes
are made to the data partition components, the application must be reflashed.

From the build folder run:
xrun --xscope example_ffd_<speech_engine>.xe

6.1.4.4 Debugging the Firmware To debug with xgdb, from the build folder run:
xgdb -ex "connect --xscope" -ex "run" example_ffd_<speech_engine>.xe

6.1.5 Deploying the Firmware with Native Windows

This document explains how to deploy the software using CMake and Ninja. If you are
not using native Windows MSVC build tools and instead using a Linux emulation tool
such as WSL, refer to Deploying the Firmware with Linux or macOS.

To installNinja follow install instructions at https://ninja-build.org/ or onWindows install
with winget by running the following commands in PowerShell:
Install
winget install Ninja-build.ninja
Reload user Path
$env:Path=[System.Environment]::GetEnvironmentVariable("Path","User")

Note: In the commands below <speech_engine> can be either sensory or
cyberon, depending on the choice of the speech recognition engine and model.

Note: The Cyberon speech recognition engine is integrated in two examples. The
example_ffd_cyberon use the microphone array as the audio source, and the
example_ffd_i2s_input_cyberon uses the I2S interface as the audio source. In

12

https://ninja-build.org/

XCORE-VOICE SOLUTION - Programming Guide

the rest of this section, we use only the example_ffd_<speech_engine> as an ex-
ample.

6.1.5.1 Building the Host Applications This application requires a host application to
create the flash data partition. Run the following commands in the root folder to build
the host application using your native Toolchain:

Note: Permissions may be required to install the host applications.

Note: A C/C++ compiler, such as Visual Studio or MinGW, must be included in the path.

Before building the host application, you will need to add the path to the XTC Tools to
your environment.
set "XMOS_TOOL_PATH=<path-to-xtc-tools>"

Then build the host application:
cmake -G Ninja -B build_host
cd build_host
ninja install

The host applications will be installed at %USERPROFILE%\.xmos\bin, and may be
moved if desired. You may wish to add this directory to your PATH variable.

6.1.5.2 Building the Firmware After having your python environment activated, run
the following commands in the root folder to build the firmware:
pip install -r requirements.txt
cmake -G Ninja -B build --toolchain=xmos_cmake_toolchain/xs3a.cmake
cd build
ninja example_ffd_<speech_engine>

6.1.5.3 Running the Firmware Before running the firmware, the filesystemandmodel
must be flashed to the data partition.

Within the root of the build folder, run:
ninja flash_app_example_ffd_<speech_engine>

After this command completes, the application will be running.

After flashing the data partition, the application can be run without reflashing. If changes
are made to the data partition components, the application must be reflashed.

From the build folder run:
xrun --xscope example_ffd_<speech_engine>.xe

6.1.5.4 Debugging the Firmware To debug with xgdb, from the build folder run:
xgdb -ex "connect --xscope" -ex "run" example_ffd_<speech_engine>.xe

6.1.6 Modifying the Software

The FFD example design is highly customizable. This section describes how to modify
the application.

13

XCORE-VOICE SOLUTION - Programming Guide

6.1.6.1 Host Integration

Overview This section describes the connections that would need to bemade to an
external host for plug and play integration with existing devices.

When an intent is found, the XCORE device will check if the host is awake, by checking
the Host Status GPIO pin. If the host is awake the intent code will be transmitted over
I2C and/or UART.

If the host is not awake, the XCORE device will trigger a transition of the Wakeup GPIO
pin. This can be configured to be a rising or falling edge. The XCORE device will then wait
for a fixed period of time, set at compile time, before transmitting the intent over the I2C
and/or UART interface. This behavior can be changed as desired by modifying the intent
handling code.

UART

Table 2: UART Connections

FFD Connection Host Connection

J4:24 UART RX
J4:20 GND

I2C

Table 3: I2C Connections

FFD Connection Host Connection

J4:3 SDA
J4:5 SCL
J4:9 GND

GPIO

Table 4: GPIO Connections

FFD Connection Host Connection

J4:19 Wake up input
J4:21 Host Status output

6.1.6.2 Audio Pipeline The audio pipeline in FFD processes two channel PDMmicro-
phone input into a single output channel, intended for use by an ASR engine.

The audio pipeline consists of 3 stages.

14

XCORE-VOICE SOLUTION - Programming Guide

Table 5: FFD Audio Pipeline

Stage Description Input
Channel
Count

Output
Channel
Count

1 Interference Canceller and Voice Noise Ratio 2 1
2 Noise Suppression 1 1
3 Automatic Gain Control 1 1

See the Voice Framework User Guide for more information.

6.1.6.3 Software Description

Overview The estimated power usage of the example application varies from 100-
141 mW. This will vary based on component tolerances and any user added code and/or
user added compile options.

Table 6: FFD Resources

Resource Tile 0 Tile 1

Total Memory Free 145k 208k
Runtime Heap Memory Free 38k 42k

15

XCORE-VOICE SOLUTION - Programming Guide

Table 7: FFD CPU Usage

Core ID Typical Mean
CPU Usage
(%)

Standard De-
viation CPU
Usage (%)

Typical Min
CPU usage (%,
10ms rolling)

Typical Max
CPU usage (%,
10ms rolling)

tile[0], core[0] 0.006 0.345 0.000 21.030
tile[0], core[1] 0.072 2.031 0.000 80.690
tile[0], core[2] 0.082 2.287 0.000 100.000
tile[0], core[3] 1.666 2.906 0.000 54.560
tile[0], core[4] 65.925 27.828 0.000 91.220
tile[1], core[0] 0.014 0.540 0.000 27.440
tile[1], core[1] 99.990 0.505 74.000 100.000
tile[1], core[2] 99.990 0.507 73.870 100.000
tile[1], core[3] 18.272 13.259 0.000 98.220
tile[1], core[4] 17.231 11.048 0.000 37.260

Note that these are typical usage statistics for a representative run of the application on
hardware. Core allocations may shift run-to-run in a scheduled RTOS. These statistics
are generated by slicing the representative run into 10 ms chunks and calculating % time
per chunk not spent in the FreeRTOS IDLE tasks. Therefore, the underlying distribution
of these 10 ms bins should not be assumed to be Normal; this has implications on e.g.
the interpretation of the Standard Deviation given here.

Table 8: FFD Power Usage

Power State Power (mW)

Always 114

The description of the software is split up by folder:

Table 9: FFD Software Description

Folder Description

examples/ffd/bsp_config Board support configuration setting up software
based IO peripherals

examples/ffd/filesys-
tem_support

Filesystem contents for application

examples/ffd/src Main application
modules/asr/intent_engine Intent engine integration
modules/asr/intent_handler Intent engine output integration

examples/ffd/bsp_config This folder contains bsp_configs for the FFD application.
More information on bsp_configs can be found in the RTOS Framework documentation.

16

XCORE-VOICE SOLUTION - Programming Guide

Table 10: FFD bsp_config

Filename/Directory Description

dac directory DAC ports for supported bsp_configs
XCORE-AI-EXPLORER direc-
tory

experimental bsp_config, not recommended for
general use

XCORE-AI-EXPLORER_EXT di-
rectory

experimental bsp_config, not recommended for
general use

XK_VOICE_L71 directory default FFD application bsp_config
XK_VOICE_L71_EXT directory USB debug extension FFD application bsp_config
bsp_config.cmake cmake for adding FFD bsp_configs

examples/ffd/filesystem_support This folder contains filesystem contents for the
FFD application.

Table 11: FFD filesystem_support

Filename/Directory Description

50.wav Playback for intent ID 50
1.wav Playback for intent ID 1
3.wav Playback for intent ID 3
4.wav Playback for intent ID 4
5.wav Playback for intent ID 5
6.wav Playback for intent ID 6
7.wav Playback for intent ID 7
8.wav Playback for intent ID 8
9.wav Playback for intent ID 9
10.wav Playback for intent ID 10
11.wav Playback for intent ID 11
12.wav Playback for intent ID 12
13.wav Playback for intent ID 13
14.wav Playback for intent ID 14
15.wav Playback for intent ID 15
16.wav Playback for intent ID 16
17.wav Playback for intent ID 17
18.wav Playback for intent ID 18

examples/ffd/src This folder contains the core application source.

17

XCORE-VOICE SOLUTION - Programming Guide

Table 12: FFD src

Filename/Directory Description

gpio_ctrl directory contains general purpose input handling and LED
handling tasks

intent_engine directory contains intent engine code
intent_handler directory contains intent handling code
rtos_conf directory contains default FreeRTOS configuration headers
app_conf_check.h header to validate app_conf.h
app_conf.h header to describe app configuration
config.xscope xscope configuration file
ff_appconf.h default fatfs configuration header
main.c main application source file
xcore_device_memory.c model loading from filesystem source file
xcore_device_memory.h model loading from filesystem header file

Audio Pipeline The audio pipeline module provides the application with three API
functions:

Listing 1: Audio Pipeline API (audio_pipeline.h)
void audio_pipeline_init(

void *input_app_data,
void *output_app_data);

void audio_pipeline_input(
void *input_app_data,
int32_t **input_audio_frames,
size_t ch_count,
size_t frame_count);

int audio_pipeline_output(
void *output_app_data,
int32_t **output_audio_frames,
size_t ch_count,
size_t frame_count);

audio_pipeline_init This function has the role of creating the audio pipeline, with
two optional application pointers which are provided to the application in the au-
dio_pipeline_input() and audio_pipeline_output() callbacks.

In FFD, the audio pipeline is initialized with no additional arguments, and instantiates a 3
stage pipeline on tile 1, as described in: Audio Pipeline

audio_pipeline_input This function has the role of providing the audio pipeline with
the input frames.

In FFD, the input is received from the rtos_mic_array driver.

audio_pipeline_output This function has the role of receiving the processed audio
pipeline output.

In FFD, the output is sent to the intent engine.

Main The major components of main are:

18

XCORE-VOICE SOLUTION - Programming Guide

Listing 2: Main components (main.c)
void startup_task(void *arg)
void vApplicationMinimalIdleHook(void)
void tile_common_init(chanend_t c)
void main_tile0(chanend_t c0, chanend_t c1, chanend_t c2, chanend_t c3)
void main_tile1(chanend_t c0, chanend_t c1, chanend_t c2, chanend_t c3)

startup_task This function has the role of launching tasks on each tile. For those
familiar with XCORE, it is comparable to the main par loop in an XC main.

vApplicationMinimalIdleHook This is a FreeRTOS callback. By calling “waiteu”
without events configured, this has the effect of bothMIPs and power savings on XCORE.

Listing 3: vApplicationMinimalIdleHook (main.c)
asm volatile("waiteu");

tile_common_init This function is the common tile initialization, which initializes the
bsp_config, creates the startup task, and starts the FreeRTOS kernel.

main_tile0 This function is the application C entry point on tile 0, provided by the
SDK.

main_tile1 This function is the application C entry point on tile 1, provided by the
SDK.

modules/asr/intent_engine This folder contains the intent engine module for the
FFD and FFVA applications.

Table 13: ASR Intent Engine

Filename/Directory Description

intent_engine_io.c contains additional io intent engine code
intent_engine_support.c contains general intent engine support code
intent_engine.c contains the implementation of default intent engine

code
intent_engine.h header for intent engine code

Major Components The intent enginemodule provides the application with two API
functions:

Listing 4: Intent Engine API (intent_engine.h)
int32_t intent_engine_create(uint32_t priority, void *args);
void intent_engine_ready_sync(void);
int32_t intent_engine_sample_push(asr_sample_t *buf, size_t frames);

If replacing the existing model, these are the only two functions that are required to be
populated.

intent_engine_create This function has the role of creating the model running task
and providing a pointer, which can be used by the application to handle the output in-
tent result. In the case of the default configuration, the application provides a FreeRTOS
Queue object.

19

XCORE-VOICE SOLUTION - Programming Guide

The ASR engine is on tile 0 in both FFD and FFVA, but the audio pipeline output is on tile
1 for FFD and on tile 0 for FFVA.

Listing 5: intent_engine_create snippet (intent_engine_io.c)
#if ASR_TILE_NO == AUDIO_PIPELINE_OUTPUT_TILE_NO

intent_engine_task_create(priority);
#else

intent_engine_intertile_task_create(priority);
#endif

The call to intent_engine_intertile_task_create() will create two threads on tile 0. One
thread is the ASR engine thread. The other thread is an intertile rx thread, which will
interface with the audio pipeline output.

intent_engine_ready_sync This function is called by both tiles and serves to ensure
that tile 0 is ready to receive audio samples before starting the audio pipeline. This is a
preventative measure to avoid dropping samples at startup.

Listing 6: intent_engine_create snippet (intent_engine_io.c)
int sync = 0;

#if ON_TILE(AUDIO_PIPELINE_OUTPUT_TILE_NO)
size_t len = rtos_intertile_rx_len(intertile_ctx, appconfINTENT_ENGINE_READY_SYNC_PORT, RTOS_OSAL_WAIT_

↪→FOREVER);
xassert(len == sizeof(sync));
rtos_intertile_rx_data(intertile_ctx, &sync, sizeof(sync));

#else
rtos_intertile_tx(intertile_ctx, appconfINTENT_ENGINE_READY_SYNC_PORT, &sync, sizeof(sync));

#endif

intent_engine_sample_push This function has the role of sending the ASR output
channel from the audio pipeline to the intent engine.

The ASR engine is on tile 0 in both FFD and FFVA, but the audio pipeline output is on tile
1 for FFD and on tile 0 for FFVA.

Listing 7: intent_engine_create snippet (intent_engine_io.c)
#if appconfINTENT_ENABLED && ON_TILE(AUDIO_PIPELINE_OUTPUT_TILE_NO)
#if ASR_TILE_NO == AUDIO_PIPELINE_OUTPUT_TILE_NO

intent_engine_samples_send_local(
frames,
buf);

#else
intent_engine_samples_send_remote(

intertile_ap_ctx,
frames,
buf);

#endif
#endif

The call to intent_engine_samples_send_remote() will send the audio samples to the pre-
viously configured intertile rx thread.

intent_engine_process_asr_result This function can be replaced by the application
to handle the intent in a completely different manner.

Miscellaneous Functions The following helper functions are provided for support-
ing the command processing features that are unique to the default FFD application:

· intent_engine_keyword_queue_count

· intent_engine_keyword_queue_complete

· intent_engine_stream_buf_reset

20

XCORE-VOICE SOLUTION - Programming Guide

· intent_engine_play_response

modules/asr/intent_handler This folder contains ASR output handling modules for
the FFD and FFVA applications.

Table 14: ASR Intent handler

Filename/Directory Description

audio_response directory include folder for handling audio responses to key-
words

intent_handler.c contains the implementation of default intent han-
dling code

intent_handler.h header for intent handler code

Major Components The intent handling module provides the application with one
API function:

Listing 8: Intent Handler API (intent_handler.h)
int32_t intent_handler_create(uint32_t priority, void *args);

If replacing the existing handler code, this is the only function that is required to be pop-
ulated.

intent_handler_create This function has the role of creating the keyword handling
task for the ASR engine. In the case of the Sensory and Cyberon models, the applica-
tion provides a FreeRTOS Queue object. This handler is on the same tile as the speech
recognition engine, tile 0.

The call to intent_handler_create() will create one thread on tile 0. This thread will receive
ID packets from the ASR engine over a FreeRTOS Queue object and output over various
IO interfaces based on configuration.

21

XCORE-VOICE SOLUTION - Programming Guide

6.1.6.4 Software Modifications The FFD example design consists of three major
software blocks, the audio pipeline, keyword spotter, and keyword handler. This section
will go into detail on how to replace each/all of these subsystems.

It is highly recommended to be familiar with the application as awhole before attempting
replacing these functional units. This information can be found here: Software Descrip-
tion

See Software Description for more details on thememory footprint and CPU usage of the
major software components.

Replacing XCORE-VOICE DSP Block The audio pipeline can be replaced by making
changes to the audio_pipeline.c file.

It is up to the user to ensure that the input and output frames of the audio pipeline remain
the same, or the remainder of the application will not function properly.

This sectionwill walk through an example of replacing the XMOSNSstage, with a custom
stage foo.

Declaration and Definition of DSP Context Replace:

22

XCORE-VOICE SOLUTION - Programming Guide

Listing 9: XMOS NS (audio_pipeline.c)
typedef struct ns_stage_ctx {

ns_state_t state;
} ns_stage_ctx_t;

static ns_stage_ctx_t ns_stage_state = {};

With:

Listing 10: Foo (audio_pipeline.c)
typedef struct foo_stage_ctx {

/* Your required state context here */
} foo_stage_ctx_t;

static foo_stage_ctx_t foo_stage_state = {};

DSP Function Replace:

Listing 11: XMOS NS (audio_pipeline.c)
static void stage_ns(frame_data_t *frame_data)
{
#if appconfAUDIO_PIPELINE_SKIP_NS

(void) frame_data;
#else

int32_t ns_output[appconfAUDIO_PIPELINE_FRAME_ADVANCE];
configASSERT(NS_FRAME_ADVANCE == appconfAUDIO_PIPELINE_FRAME_ADVANCE);
ns_process_frame(

&ns_stage_state.state,
ns_output,
frame_data->samples[0]);

memcpy(frame_data->samples, ns_output, appconfAUDIO_PIPELINE_FRAME_ADVANCE * sizeof(int32_t));
#endif
}

With:

Listing 12: Foo (audio_pipeline.c)
static void stage_foo(frame_data_t *frame_data)
{

int32_t foo_output[appconfAUDIO_PIPELINE_FRAME_ADVANCE];
foo_process_frame(

&foo_stage_state.state,
foo_output,
frame_data->samples[0]);

memcpy(frame_data->samples, foo_output, appconfAUDIO_PIPELINE_FRAME_ADVANCE * sizeof(int32_t));
}

Runtime Initialization Replace:

Listing 13: XMOS NS (audio_pipeline.c)
ns_init(&ns_stage_state.state);

With:

Listing 14: Foo (audio_pipeline.c)
foo_init(&foo_stage_state.state);

Audio Pipeline Setup Replace:

23

XCORE-VOICE SOLUTION - Programming Guide

Listing 15: XMOS NS (audio_pipeline.c)
const pipeline_stage_t stages[] = {

(pipeline_stage_t)stage_vnr_and_ic,
(pipeline_stage_t)stage_ns,
(pipeline_stage_t)stage_agc,

};

const configSTACK_DEPTH_TYPE stage_stack_sizes[] = {
configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_vnr_and_ic) + RTOS_THREAD_STACK_SIZE(audio_pipeline_

↪→input_i),
configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_ns),
configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_agc) + RTOS_THREAD_STACK_SIZE(audio_pipeline_output_

↪→i),
};

With:

Listing 16: Foo (audio_pipeline.c)
const pipeline_stage_t stages[] = {

(pipeline_stage_t)stage_vnr_and_ic,
(pipeline_stage_t)stage_foo,
(pipeline_stage_t)stage_agc,

};

const configSTACK_DEPTH_TYPE stage_stack_sizes[] = {
configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_vnr_and_ic) + RTOS_THREAD_STACK_SIZE(audio_pipeline_

↪→input_i),
configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_foo),
configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_agc) + RTOS_THREAD_STACK_SIZE(audio_pipeline_output_

↪→i),
};

It is also possible to add or remove stages. Refer to the RTOS Framework documentation
on the generic pipeline sw_service.

Replacing Example Design Interfaces It may be desired to have a different output
interface to talk to a host, or not have a host at all and handle the intent local to the XCORE
device.

Different Peripheral IO To add or remove a peripheral IO, modify the bsp_config
accordingly. Refer to documentation inside the RTOS Framework on how to instantiate
different RTOS peripheral drivers.

24

XCORE-VOICE SOLUTION - Programming Guide

Direct Control In a single controller system, the XCORE can be used to control pe-
ripherals directly.

The proc_keyword_res task can be modified as follows:

Listing 17: Intent Handler (intent_handler.c)
static void proc_keyword_res(void *args) {

QueueHandle_t q_intent = (QueueHandle_t) args;
int32_t id = 0;

while(1) {
xQueueReceive(q_intent, &id, portMAX_DELAY);

/* User logic here */
}

}

This code example will receive the ID of each intent, and can be populated by any user
application logic. User logic can use other RTOS drivers to control various peripherals,
such as screens, motors, lights, etc, based on the intent engine outputs.

25

XCORE-VOICE SOLUTION - Programming Guide

6.1.6.5 Speech Recognition - Sensory

License The Sensory TrulyHandsFree™ (THF) speech recognition library is Copy-
right (C) 1995-2022 Sensory Inc., All Rights Reserved.

Sensory THF software requires a commercial license granted by Sensory Inc. This soft-
ware ships with an expiring development license. It will suspend recognition after 11.4
hours or 107 recognition events.

Overview The Sensory THF speech recognition engine runs proprietary models to
identify keywords in an audio stream. Models can be generated using VoiceHub.

Two models are provided - one in US English and one in Mainland Mandarin. The US
Englishmodel is used by default. Tomodify the software to use theMandarinmodel, see
the comment at the top of the ffd_sensory.cmake file. Make sure run the following
commands to rebuild and re-flash the data partition:
make clean
make flash_app_example_ffd_sensory -j

Dictionary command table

Table 15: English Language Demo

Utterances Type Return code (decimal)

Hello XMOS keyword 1
Switch on the TV command 3
Switch off the TV command 4
Channel up command 5
Channel down command 6
Volume up command 7
Volume down command 8
Switch on the lights command 9
Switch off the lights command 10
Brightness up command 11
Brightness down command 12
Switch on the fan command 13
Switch off the fan command 14
Speed up the fan command 15
Slow down the fan command 16
Set higher temperature command 17
Set lower temperature command 18

26

https://www.sensory.com/
https://voicehub.sensory.com/

XCORE-VOICE SOLUTION - Programming Guide

Application Integration In depth information on out of the box integration can be
found here: Host Integration

27

XCORE-VOICE SOLUTION - Programming Guide

6.1.6.6 Speech Recognition - Cyberon

License Cyberon DSpotter™ software requires a commercial license granted by Cy-
beron Corporation. This software ships with an expiring development license. It will
suspend recognition after 100 recognition events.

Production versions of the DSpotter™ library are unrestricted when running on a specially
licensed XMOS device. Please contact Cyberon or XMOS sales for further information.

Overview The Cyberon DSpotter™ speech recognition engine runs proprietary mod-
els to identify keywords in an audio stream.

One model for US English is provided. For any technical questions or additional models
please contact Cyberon.

Dictionary command table

Table 16: English Language Demo

Utterances Type Return code (decimal)

Hello XMOS keyword 1
Hello Cyberon keyword 1
Switch on the TV command 2
Switch off the TV command 3
Channel up command 4
Channel down command 5
Volume up command 6
Volume down command 7
Switch on the lights command 8
Switch off the lights command 9
Brightness up command 10
Brightness down command 11
Switch on the fan command 12
Switch off the fan command 13
Speed up the fan command 14
Slow down the fan command 15
Set higher temperature command 16
Set lower temperature command 17

28

https://www.cyberon.com.tw/
https://www.cyberon.com.tw/

XCORE-VOICE SOLUTION - Programming Guide

Application Integration In depth information on out of the box integration can be
found here: Host Integration

29

XCORE-VOICE SOLUTION - Programming Guide

6.2 Low Power Far-field Voice Local Command

6.2.1 Overview

The low power far-field voice local command (Low Power FFD) example design targets
low power speech recognition using Sensory’s TrulyHandsfree™ (THF) speech recogni-
tion and local dictionary.

When the small wake word model running on tile 1 recognizes a wake word utterance,
the device transitions to full powermodewhere tile 0’s commandmodel begins receiving
audio samples, continuing the command recognition process. On command recognition,
the application outputs a discrete message over I2C and UART.

Tile 0’s command model, in combination with a timer, determines when to request a
transition to low power. Tile 1 may accept or reject this request based on its own timer
that is reset on wake word recognitions and potentially other application-specific events.
The figure below illustrates the general behavior.

When in low power mode, tile 0 is effectively disabled along with any peripheral/IO asso-
ciated with that tile.

Sensory’s THF software ships with an expiring development license. It will suspend
recognition after 11.4 hours or 107 recognition events; after which, a device reset is re-
quired to resume normal operation. To perform a reset, either power cycle the device or
press the SW2 button. Note that SW2 is only functional while in full power mode (this

30

XCORE-VOICE SOLUTION - Programming Guide

application is configured to hold the device in full-powermode on such license expiration
events).

More information on the Sensory speech recognition library can be found here: Speech
Recognition

31

XCORE-VOICE SOLUTION - Programming Guide

6.2.2 Supported Hardware

This example application is supported on the XK-VOICE-L71 board.

6.2.2.1 Setting up the Hardware This example design requires an XTAG4 and XK-
VOICE-L71 board.

xTAG The xTAG is used to program and debug the device

Connect the xTAG to the debug header, as shown below.

Connect the micro USB XTAG4 and micro USB XK-VOICE-L71 to the programming host.

32

https://www.xmos.com/xk-voice-l71

XCORE-VOICE SOLUTION - Programming Guide

33

XCORE-VOICE SOLUTION - Programming Guide

6.2.3 Configuring the Firmware

The default application performs as described in theOverview. There are numerous com-
pile time options that can be added to change the example design without requiring code
changes. To change the options explained in the table below, add the desired configura-
tion variables to the APP_COMPILE_DEFINITIONS CMake variable located in the exam-
ple’s CMake file here.

If options are changed, the application firmware must be rebuilt.

Table 17: Low Power FFD Compile Options

Compile Option Description De-
fault
Value

appconfINTENT_RESET_DELAY_MS Sets the period after the wake
word phrase or subsequent com-
mand/wake word phrase has
been heard for a valid command
phrase

4000

appconfIN-
TENT_UART_OUTPUT_ENABLED

Enables/disables the UART intent
message

1

appconfIN-
TENT_I2C_MASTER_OUTPUT_ENABLED

Enables/disables sending the in-
tent message over I2C master

1

appconfUART_BAUD_RATE Sets the baud rate for the UART tx
intent interface

9600

appconfIN-
TENT_I2C_MASTER_DEVICE_ADDR

Sets the I2C slave address to
transmit the intent to

0x01

appconfIN-
TENT_TRANSPORT_DELAY_MS

Sets the delay between host wake
up requested and I2C and UART
keyword code transmission

50

appconfINTENT_QUEUE_LEN Sets the maximum number of de-
tected intents to hold while wait-
ing for the host to wake up

10

appconfIN-
TENT_WAKEUP_EDGE_TYPE

Sets the host wake up pin GPIO
edge type. 0 for rising edge, 1 for
falling edge

0

appconfAU-
DIO_PIPELINE_SKIP_IC_AND_VNR

Enables/disables the IC and VNR 0

appconfAUDIO_PIPELINE_SKIP_NS Enables/disables the NS 0
appconfAUDIO_PIPELINE_SKIP_AGC Enables/disables the AGC 0

34

https://github.com/xmos/sln_voice/blob/develop/examples/low_power_ffd/low_power_ffd.cmake

XCORE-VOICE SOLUTION - Programming Guide

6.2.4 Deploying the Firmware with Linux or macOS

This document explains how to deploy the software using CMake and Make.

6.2.4.1 Building the Host Applications This application requires a host application
to create the flash data partition. Run the following commands in the root folder to build
the host application using your native toolchain:

Note: Permissions may be required to install the host applications.

cmake -B build_host
cd build_host
make install

The host applicationswill be installed at /opt/xmos/bin, andmay bemoved if desired.
You may wish to add this directory to your PATH variable.

6.2.4.2 Building the Firmware After having your python environment activated, run
the following commands in the root folder to build the firmware:
pip install -r requirements.txt
cmake -B build --toolchain=xmos_cmake_toolchain/xs3a.cmake
cd build
make example_low_power_ffd_sensory

6.2.4.3 Running the Firmware Before running the firmware, the filesystem and com-
mand model must be flashed to the data partition.

Within the root of the build folder, run:
make flash_app_example_low_power_ffd_sensory

After this command completes, the application will be running.

After flashing the data partition, the application can be run without reflashing. If changes
are made to the data partition components, the application must be reflashed.

From the build folder run:
xrun --xscope example_low_power_ffd_sensory.xe

6.2.4.4 Debugging the Firmware To debug with xgdb, from the build folder run:
xgdb -ex "connect --xscope" -ex "run" example_low_power_ffd_sensory.xe

35

XCORE-VOICE SOLUTION - Programming Guide

6.2.5 Deploying the Firmware with Native Windows

This document explains how to deploy the software using CMake and Ninja. If you are
not using native Windows MSVC build tools and instead using a Linux emulation tool
such as WSL, refer to Deploying the Firmware with Linux or macOS.

To installNinja follow install instructions at https://ninja-build.org/ or onWindows install
with winget by running the following commands in PowerShell:
Install
winget install Ninja-build.ninja
Reload user Path
$env:Path=[System.Environment]::GetEnvironmentVariable("Path","User")

6.2.5.1 Building the Host Applications This application requires a host application
to create the flash data partition. Run the following commands in the root folder to build
the host application using your native toolchain:

Note: Permissions may be required to install the host applications.

Note: A C/C++ compiler, such as Visual Studio or MinGW, must be included in the path.

Before building the host application, you will need to add the path to the XTC Tools to
your environment.
set "XMOS_TOOL_PATH=<path-to-xtc-tools>"

Then build the host application:
cmake -G Ninja -B build_host
cd build_host
ninja install

The host applications will be installed at %USERPROFILE%\.xmos\bin, and may be
moved if desired. You may wish to add this directory to your PATH variable.

6.2.5.2 Building the Firmware After having your python environment activated, run
the following commands in the root folder to build the firmware:
pip install -r requirements.txt
cmake -G Ninja -B build --toolchain=xmos_cmake_toolchain/xs3a.cmake
cd build
ninja example_low_power_ffd_sensory

6.2.5.3 Running the Firmware Before running the firmware, the filesystem and com-
mand model must be flashed to the data partition.

Within the root of the build folder, run:
ninja flash_app_example_low_power_ffd_sensory

After this command completes, the application will be running.

After flashing the data partition, the application can be run without reflashing. If changes
are made to the data partition components, the application must be reflashed.

From the build folder run:

36

https://ninja-build.org/

XCORE-VOICE SOLUTION - Programming Guide

xrun --xscope example_low_power_ffd_sensory.xe

6.2.5.4 Debugging the Firmware To debug with xgdb, from the build folder run:
xgdb -ex "connect --xscope" -ex "run" example_low_power_ffd_sensory.xe

37

XCORE-VOICE SOLUTION - Programming Guide

6.2.6 Modifying the Software

The low-power FFD example design is highly customizable. This section describes how
to modify the application.

6.2.6.1 Host Integration

Overview This section describes the connections that would need to bemade to an
external host for plug and play integration with existing devices.

When an intent is found, the XCORE device will check if the host is awake, by checking
the Host Status GPIO pin. If the host is awake the intent code will be transmitted over
I2C and/or UART.

If the host is not awake, the XCORE device will trigger a transition of the Wakeup GPIO
pin. This can be configured to be a rising or falling edge. The XCORE device will then wait
for a fixed period of time, set at compile time, before transmitting the intent over the I2C
and/or UART interface. This behavior can be changed as desired by modifying the intent
handling code.

38

XCORE-VOICE SOLUTION - Programming Guide

UART

Table 18: UART Connections

Low Power FFD Connection Host Connection

J4:24 UART RX
J4:20 GND

I2C

Table 19: I2C Connections

Low Power FFD Connection Host Connection

J4:3 SDA
J4:5 SCL
J4:9 GND

GPIO

Table 20: GPIO Connections

Low Power FFD Connection Host Connection

J4:19 Wake up input
J4:21 Host Status output

6.2.6.2 Audio Pipeline The audio pipeline in Low Power FFD processes two channel
PDM microphone input into a single output channel, intended for use by an ASR engine.

The audio pipeline consists of 3 stages.

Table 21: FFD Audio Pipeline

Stage Description Input
Channel
Count

Output
Channel
Count

1 Interference Canceller and Voice Noise Ratio 2 1
2 Noise Suppression 1 1
3 Automatic Gain Control 1 1

See the Voice Framework User Guide for more information.

6.2.6.3 Software Description

Overview The approximate resource utilizations for Low Power FFD are shown in
the table below.

39

XCORE-VOICE SOLUTION - Programming Guide

Table 22: Low Power FFD Resources

Resource Tile 0 Tile 1

Unused CPU Time (600MHz |
200MHz)

50% 10%

Total Memory Free 19.1k 5.3k
Runtime Heap Memory Free 219k 12.4k

The estimated (core) power usage for LowPower FFDare shown in the table below. Addi-
tional power savings may be possible using Sensory’s Low Power Sound Detect (LPSD)
option which approaches sub-50mW operation in Low Power mode. These measure-
ments will vary based on component tolerances and any user added code and/or user
added compile options.

Table 23: Low Power FFD Power Usage

Power State Core Power (mW)

Low Power 54
Full Power 110

The description of the software is split up by folder:

Table 24: Low Power FFD Software Description

Folder Description

bsp_config Board support configuration setting up software
based IO peripherals

filesystem_support Filesystem contents for application
model Wake word and command model files
src Main application
src/gpio_ctrl GPIO and LED related functions
src/intent_engine Intent engine integration
src/intent_handler Intent engine output integration
src/power Low power control logic
src/wakeword Wake word engine integration

bsp_config This folder contains bsp_configs for the Low Power FFD application.
More information on bsp_configs can be found in the RTOS Framework documentation.

Table 25: Low Power FFD bsp_config

Filename/Directory Description

dac directory DAC ports for supported bsp_configs (not used in
example, disabled)

XK_VOICE_L71 directory default Low Power FFD application bsp_config
bsp_config.cmake cmake for adding Low Power FFD bsp_configs

40

XCORE-VOICE SOLUTION - Programming Guide

filesystem_support This folder contains filesystem contents for the Low Power
FFD application.

Table 26: Low Power FFD filesystem_support

Filename/Directory Description

demo.txt A file for demonstrative purposes containing the text
“Hello World!”. This file is not used or interacted with
in this application.

model This folder contains the Sensory wake word and command model files the
Low Power FFD application.

Note: Only a subset of the files below are used. See low_power_ffd.cmake for the
files used by the application. Also note the nibble-swapped net-file ismanually generated,
via the nibble_swap tool found in lib_qspi_fast_read.

Table 27: Low Power FFD model

Filename/Directory Description

command-pc62w-6.1.0-op10-prod-
net.bin

The commandmodel’s net-file, in binary-form

command-pc62w-6.1.0-op10-prod-
net.bin.nibble_swapped

The commandmodel’s net-file, in binary-form
(nibble swapped, for supporting fast flash
reads)

command-pc62w-6.1.0-op10-prod-
net.c

The commandmodel’s net-file, in source form

command-pc62w-6.1.0-op10-prod-
search.bin

The command model’s search-file, in binary
form

command-pc62w-6.1.0-op10-prod-
search.c

The command model’s search-file, in source
form

command-pc62w-6.1.0-op10-prod-
search.h

The command model’s search header-file

command.snsr The command model’s Sensory THF/TNL
SDK “snsr” file

wakeword-pc60w-6.1.0-op10-prod-
net.bin

Thewakewordmodel’s net-file, in binary-form

wakeword-pc60w-6.1.0-op10-prod-
net.c

The wake word model’s net-file, in source
form

wakeword-pc60w-6.1.0-op10-prod-
search.bin

The wake word model’s search-file, in binary
form

wakeword-pc60w-6.1.0-op10-prod-
search.c

The wake word model’s search-file, in source
form

wakeword-pc60w-6.1.0-op10-prod-
search.h

The wake word model’s search header-file

wakeword.snsr The wake word model’s Sensory THF/TNL
SDK “snsr” file

src This folder contains the core application source.

41

XCORE-VOICE SOLUTION - Programming Guide

Table 28: FFD src

Filename/Directory Description

gpio_ctrl directory contains general purpose input handling and LED
handling tasks

intent_engine directory contains intent engine code
intent_handler directory contains intent handling code
power directory contains low power control logic and related audio

buffer
rtos_conf directory contains default FreeRTOS configuration headers
wakeword directory contains wake word detection code
app_conf_check.h header to validate app_conf.h
app_conf.h header to describe app configuration
config.xscope xscope configuration file
ff_appconf.h default fatfs configuration header
main.c main application source file
device_memory_impl.c contains XCORE device memory functions for sup-

porting ASR functionality
device_memory_impl.h header for the device memory implementation

Audio Pipeline The audio pipeline module provides the application with three API
functions:

Listing 18: Audio Pipeline API (audio_pipeline.h)
void audio_pipeline_init(

void *input_app_data,
void *output_app_data);

void audio_pipeline_input(
void *input_app_data,
int32_t **input_audio_frames,
size_t ch_count,
size_t frame_count);

int audio_pipeline_output(
void *output_app_data,
int32_t **output_audio_frames,
size_t ch_count,
size_t frame_count);

audio_pipeline_init This function has the role of creating the audio pipeline, with
two optional application pointers which are provided to the application in the au-
dio_pipeline_input() and audio_pipeline_output() callbacks.

In Low Power FFD, the audio pipeline is initialized with no additional arguments, and
instantiates a 3 stage pipeline on tile 1, as described in: Audio Pipeline

audio_pipeline_input This function has the role of providing the audio pipeline with
the input frames.

In Low Power FFD, the input is received from the rtos_mic_array driver.

audio_pipeline_output This function has the role of receiving the processed audio
pipeline output.

In LowPower FFD, the output is sent to both thewakeword handler and the intent engine.
Because the intent engine will be suspended in low power mode and that there is a finite

42

XCORE-VOICE SOLUTION - Programming Guide

time that it takes to resume full power operation, there is a ring buffer placed between
the audio output received from this routine and the intent engine’s stream buffer.

Main The major components of main are:

Listing 19: Main components (main.c)
void startup_task(void *arg)
void vApplicationMinimalIdleHook(void)
void tile_common_init(chanend_t c)
void main_tile0(chanend_t c0, chanend_t c1, chanend_t c2, chanend_t c3)
void main_tile1(chanend_t c0, chanend_t c1, chanend_t c2, chanend_t c3)

startup_task This function has the role of launching tasks on each tile. For those
familiar with XCORE, it is comparable to the main par loop in an XC main.

vApplicationMinimalIdleHook This is a FreeRTOS callback. By calling “waiteu”
without events configured, this has the effect of bothMIPs and power savings on XCORE.

Listing 20: vApplicationMinimalIdleHook (main.c)
asm volatile("waiteu");

tile_common_init This function is the common tile initialization, which initializes the
bsp_config, creates the startup task, and starts the FreeRTOS kernel.

main_tile0 This function is the application C entry point on tile 0, provided by the
SDK.

main_tile1 This function is the application C entry point on tile 1, provided by the
SDK.

src/gpio_ctrl This folder contains theGPIO and LED related functionality for the Low
Power FFD application.

Table 29: Low Power FFD gpio_ctrl

Filename/Directory Description

gpi_ctrl.c The general purpose input control source file.
Implements SW2 reset logic.

gpi_ctrl.h The general purpose input control header file.
leds.c The LED task source file. Handles the appli-

cations LED indications.
leds.h The LED task header file.

src/intent_engine This folder contains the intent engine module for the low power
FFD application.

43

XCORE-VOICE SOLUTION - Programming Guide

Table 30: Low Power FFD Intent Engine

Filename/Directory Description

intent_engine_io.c contains additional io intent engine code
intent_engine_support.c contains general intent engine support code
intent_engine.c contains the implementation of default intent engine

code
intent_engine.h header for intent engine code

Major Components The intent engine module provides the application with the fol-
lowing primary API functions:

Listing 21: Intent Engine API (intent_engine.h)
int32_t intent_engine_create(uint32_t priority, void *args);
void intent_engine_ready_sync(void);
int32_t intent_engine_sample_push(asr_sample_t *buf, size_t frames);

These APIs provide the functionality needed to feed audio pipeline samples into the ASR
engine.

intent_engine_create This function has the role of creating the model running task
and providing a pointer, which can be used by the application to handle the output in-
tent result. In the case of the default configuration, the application provides a FreeRTOS
Queue object.

In Low Power FFD, the audio pipeline output is on tile 1 and the ASR engine on tile 0.

Listing 22: intent_engine_create snippet (intent_engine_io.c)
intent_engine_intertile_task_create(priority);

The call to intent_engine_intertile_task_create() will create two threads on tile 0. One
thread is the ASR engine thread. The other thread is an intertile RX thread, which will
interface with the audio pipeline output.

intent_engine_ready_sync This function is called by both tiles and serves to ensure
that tile 0 is ready to receive audio samples before starting the audio pipeline. This is a
preventative measure to avoid dropping samples at startup.

Listing 23: intent_engine_create snippet (intent_engine_io.c)
int sync = 0;

#if ON_TILE(AUDIO_PIPELINE_OUTPUT_TILE_NO)
size_t len = rtos_intertile_rx_len(intertile_ctx, appconfINTENT_ENGINE_READY_SYNC_PORT, RTOS_OSAL_WAIT_

↪→FOREVER);
xassert(len == sizeof(sync));
rtos_intertile_rx_data(intertile_ctx, &sync, sizeof(sync));

#else
rtos_intertile_tx(intertile_ctx, appconfINTENT_ENGINE_READY_SYNC_PORT, &sync, sizeof(sync));

#endif

intent_engine_sample_push This function has the role of sending the ASR output
channel from the audio pipeline to the intent engine.

In Low Power FFD, the audio pipeline output is on tile 1 and the ASR engine on tile 0.

44

XCORE-VOICE SOLUTION - Programming Guide

Listing 24: intent_engine_create snippet (intent_engine_io.c)
intent_engine_samples_send_remote(

intertile_ap_ctx,
frames,
buf);

The call to intent_engine_samples_send_remote() will send the audio samples to the pre-
viously configured intertile RX thread.

intent_engine_process_asr_result This function can be replaced by the application
to handle the intent in a completely different manner.

Low Power Components The following APIs are the intent engine mechanisms
needed by the power control task.

Listing 25: Low Power APIs (intent_engine.h)
void intent_engine_full_power_request(void);
void intent_engine_low_power_accept(void);

In this implementation, it is the responsibility of tile 0 (intent engine tile) to determine
when to request a transition into low power mode; however, tile 1 may reject the request.
When tile 1 accepts the request (via LOW_POWER_ACK), the power control task calls
intent_engine_low_power_accept. When tile 1 rejects the request (via LOW_POWER_NAK),
the power control task calls intent_engine_full_power_request.

Note: There is an additional LOW_POWER_HALT response where the power control task
calls intent_engine_halt. This is primarily for end-of-evaluation handling logic for the un-
derlying ASR engine and is not needed for a normal application.

After tile 1 accepts the low power request, tile 0 begins preparations for entering low
power by locking various resources and waiting for any enqueued commands to finish
up. The helper functions below are provided for this purpose.

Listing 26: Low Power Helper Functions (intent_engine.h)
int32_t intent_engine_keyword_queue_count(void);
void intent_engine_keyword_queue_complete(void);
uint8_t intent_engine_low_power_ready(void);

Before tile 1 sends LOW_POWER_ACK it also stops pushing audio samples via in-
tent_engine_sample_push. After receiving the low power response, the application may
clear the stream buffer and keyword queue to avoid processing stale samples/com-
mandswhen returning to full powermode. The functions belowprovide this functionality.

Listing 27: Low Power Helper Functions (intent_engine.h)
void intent_engine_keyword_queue_reset(void);
void intent_engine_stream_buf_reset(void);

Note: Since it is possible that a command is spoken/recognized between the timewhen
tile 0 requests low power and when tile 1 responds to the request, the application should
not reset these buffer entities until it has received LOW_POWER_ACK; otherwise, recog-
nized commands may be lost.

45

XCORE-VOICE SOLUTION - Programming Guide

Evaluation Specific Components The following functions are provided for the pri-
mary purpose of facilitating the evaluation of the ASR model. The provided ASR models
have evaluation periodswhichwill end due to various factors. When the evaluation period
ends, the application logic halts the intent engine via intent_engine_halt. This is primar-
ily to ensure the device remains in full-power mode to allow functionality that may be
exclusive to tile 0 to function.

Listing 28: Evaluation-specific Helper Functions (intent_engine.h)
void intent_engine_halt(void);

src/intent_handler This folder contains ASR output handling modules for the Low
Power FFD application.

Table 31: FFD Intent handler

Filename/Directory Description

intent_handler.c contains the implementation of default intent han-
dling code

intent_handler.h header for intent handler code

Major Components The intent handling module provides the application with one
API function:

Listing 29: Intent Handler API (intent_handler.h)
int32_t intent_handler_create(uint32_t priority, void *args);

If replacing the existing handler code, this is the only function that is required to be pop-
ulated.

intent_handler_create This function has the role of creating the keyword handling
task for the ASR engine. In the case of the Sensory model, the application provides a
FreeRTOS Queue object. This handler is on the same tile as the Sensory engine, tile 0.

The call to intent_handler_create() will create one thread on tile 0. This thread will receive
ID packets from the ASR engine over a FreeRTOS Queue object and output over various
IO interfaces based on configuration.

src/power This folder contains the low power control logic and supporting logic.

Table 32: Low Power FFD power

Filename/Directory Description

low_power_audio_buffer.c Implementation of an audio sample ring
buffer. Aids in responsiveness to commands
during a transition to full power mode.

low_power_audio_buffer.c Header for the low power audio buffer.
power_control.c Implementation of the power control logic.
power_control.h Header for power control logic.
power_state.c Implementation of Tile 1 power state logic.
power_state.h Header for power state logic.

46

XCORE-VOICE SOLUTION - Programming Guide

Major Components The power control module provides the application with the fol-
lowing primary API functions:

Listing 30: Power Control API (power_control.h)
void power_control_task_create(unsigned priority, void *args);
void power_control_exit_low_power(void);
power_state_t power_control_state_get(void);
void power_control_halt(void);
void power_control_req_low_power(void);
void power_control_ind_complete(void);

power_control_task_create Creates and starts the power control task. To be called
by each tile.

power_control_exit_low_power Applicable only for Tile 1. Begins a transition to full
power mode and is intended to be called by the power_state_set() routine.

power_control_state_get Applicable only for Tile 1. Gets the current power state.

power_control_halt Applicable only for Tile 1. Halts the power control task. This
is provided primarily for end-of-evaluation logic, but severs to terminate the low power
logic. When halted, the system remains in full power mode.

power_control_req_low_power Applicable only for Tile 0. Requests a transition to
low power mode.

power_control_ind_complete Applicable only for Tile 0. Indication that the last step
for preparing for a low power transition has completed and allows the power control task
to continue with final steps. This is primarily to ensure the LED indications are up-to-date
before driver locks are taken (which include GPIO/LED control).

Power State Components The power state module provides the application with
the following primary API functions:

Listing 31: Power State API (power_state.h)
void power_state_init();
void power_state_set(power_state_t state);
uint8_t power_state_timer_expired_get(void);

This module is also responsible for providing the base power state datatype
(power_state_t) used by other low power logic.

power_state_init Initializes the power state module. Responsible to initializing the
underlying timer that effectively determines whether a low power request by Tile 0 is
accepted or rejected.

power_state_set Used by Tile 1’s application to signal full power events (such as
wake word detection or other application-specific events). Used by Tile 1’s power control
logic to signal low power only after Tile 0 has requested low power mode and the local
timer has expired.

power_state_timer_expired_get Used by the Tile 1’s power control logic to deter-
mine whether to accept or reject a low power request by Tile 0.

47

XCORE-VOICE SOLUTION - Programming Guide

src/wakeword This folder contains the wake word recognition functionality for the
Low Power FFD application.

Table 33: Low Power FFD wakeword

Filename/Directory Description

wakeword.c The wake word engine source file. Respon-
sible for the transfer of audio samples into
the ASR and handling of wake word detection
events.

wakeword.h The wake word engine header file.

Major Components The wakeword module provides the application with two API
functions:

Listing 32: Wake Word API (wakeword.h)
void wakeword_init(void);
wakeword_result_t wakeword_handler(asr_sample_t *buf, size_t num_frames);

wakeword_init This function performs the required initialization for the wake-
word_handler() function to operate. This involves initializing an instance of de-
vmem_manager_t for use by the ASR abstraction layer and initialization of the ASR unit
itself. It is to be called once during startup before any call to wakeword_handler() occurs.

wakeword_handler This function performs wake word detection logic and reports
back to the caller a result, indicating whether a wake word was recognized. Note: this
routine is called by audio_pipeline_output(), meaning this routine’s logic should be kept
to a minimum to ensure timing requirements are met.

In this implementation a single wake word ID of 1 is defined. Minimal adaptation is
needed to support other models supporting other IDs or more than one valid wake word.

48

XCORE-VOICE SOLUTION - Programming Guide

6.2.6.4 SoftwareModifications The LowPower FFDexample design consists of four
major software blocks: the audio pipeline, ASR engine (wake word and intent engines),
intent handler, and power control. This section will go into detail on how to replace each
subsystem.

It is highly recommended to be familiar with the application as awhole before attempting
replacing these functional units. This information can be found here: Software Descrip-
tion

See Software Description for more details on thememory footprint and CPU usage of the
major software components.

Replacing XCORE-VOICE DSP Block The audio pipeline can be replaced by making
changes to the audio_pipeline.c file.

It is up to the user to ensure that the input and output frames of the audio pipeline remain
the same, or the remainder of the application will not function properly.

This sectionwill walk through an example of replacing the XMOSNSstage, with a custom
stage foo.

Declaration and Definition of DSP Context Replace:

49

XCORE-VOICE SOLUTION - Programming Guide

Listing 33: XMOS NS (audio_pipeline.c)
typedef struct ns_stage_ctx {

ns_state_t state;
} ns_stage_ctx_t;

static ns_stage_ctx_t ns_stage_state = {};

With:

Listing 34: Foo (audio_pipeline.c)
typedef struct foo_stage_ctx {

/* Your required state context here */
} foo_stage_ctx_t;

static foo_stage_ctx_t foo_stage_state = {};

DSP Function Replace:

Listing 35: XMOS NS (audio_pipeline.c)
static void stage_ns(frame_data_t *frame_data)
{
#if appconfAUDIO_PIPELINE_SKIP_NS

(void) frame_data;
#else

int32_t ns_output[appconfAUDIO_PIPELINE_FRAME_ADVANCE];
configASSERT(NS_FRAME_ADVANCE == appconfAUDIO_PIPELINE_FRAME_ADVANCE);
ns_process_frame(

&ns_stage_state.state,
ns_output,
frame_data->samples[0]);

memcpy(frame_data->samples, ns_output, appconfAUDIO_PIPELINE_FRAME_ADVANCE * sizeof(int32_t));
#endif
}

With:

Listing 36: Foo (audio_pipeline.c)
static void stage_foo(frame_data_t *frame_data)
{

int32_t foo_output[appconfAUDIO_PIPELINE_FRAME_ADVANCE];
foo_process_frame(

&foo_stage_state.state,
foo_output,
frame_data->samples[0]);

memcpy(frame_data->samples, foo_output, appconfAUDIO_PIPELINE_FRAME_ADVANCE * sizeof(int32_t));
}

Runtime Initialization Replace:

Listing 37: XMOS NS (audio_pipeline.c)
ns_init(&ns_stage_state.state);

With:

Listing 38: Foo (audio_pipeline.c)
foo_init(&foo_stage_state.state);

Audio Pipeline Setup Replace:

50

XCORE-VOICE SOLUTION - Programming Guide

Listing 39: XMOS NS (audio_pipeline.c)
const pipeline_stage_t stages[] = {

(pipeline_stage_t)stage_vnr_and_ic,
(pipeline_stage_t)stage_ns,
(pipeline_stage_t)stage_agc,

};

const configSTACK_DEPTH_TYPE stage_stack_sizes[] = {
configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_vnr_and_ic) + RTOS_THREAD_STACK_SIZE(audio_pipeline_

↪→input_i),
configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_ns),
configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_agc) + RTOS_THREAD_STACK_SIZE(audio_pipeline_output_

↪→i),
};

With:

Listing 40: Foo (audio_pipeline.c)
const pipeline_stage_t stages[] = {

(pipeline_stage_t)stage_vnr_and_ic,
(pipeline_stage_t)stage_foo,
(pipeline_stage_t)stage_agc,

};

const configSTACK_DEPTH_TYPE stage_stack_sizes[] = {
configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_vnr_and_ic) + RTOS_THREAD_STACK_SIZE(audio_pipeline_

↪→input_i),
configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_foo),
configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_agc) + RTOS_THREAD_STACK_SIZE(audio_pipeline_output_

↪→i),
};

It is also possible to add or remove stages. Refer to the RTOS Framework documentation
on the generic pipeline sw_service.

Replacing ASR Engine Block Replacing the keyword spotter engine has the poten-
tial to require significant changes due to various feature extraction input requirements
and varied output logic.

The generic intent engine API only requires two functions be declared:

Listing 41: Intent API (intent_engine.h)
/* Generic interface for intent engines */
int32_t intent_engine_create(uint32_t priority, void *args);
int32_t intent_engine_sample_push(asr_sample_t *buf, size_t frames);

Refer to the existing Sensorymodel implementation for details on how the output handler
is set up, how the audio is conditioned to the expectedmodel format, and how it receives
frames from the audio pipeline.

Replacing Example Design Interfaces It may be desired to have a different output
interface to talk to a host, or not have a host at all and handle the intent local to the XCORE
device.

Different Peripheral IO To add or remove a peripheral IO, modify the bsp_config
accordingly. Refer to documentation inside the RTOS Framework on how to instantiate
different RTOS peripheral drivers.

51

XCORE-VOICE SOLUTION - Programming Guide

Direct Control In a single controller system, the XCORE can be used to control pe-
ripherals directly.

The proc_keyword_res task can be modified as follows:

Listing 42: Intent Handler (intent_handler.c)
static void proc_keyword_res(void *args) {

QueueHandle_t q_intent = (QueueHandle_t) args;
int32_t id = 0;

while(1) {
xQueueReceive(q_intent, &id, portMAX_DELAY);

/* User logic here */
}

}

This code example will receive the ID of each intent, and can be populated by any user
application logic. User logic can use other RTOS drivers to control various peripherals,
such as screens, motors, lights, etc, based on the intent engine outputs.

52

XCORE-VOICE SOLUTION - Programming Guide

Replacing Example Power Control Logic Depending on the peripherals used in the
end application, the requirements and handling of the power control/state logicmayneed
adaptation. The power control logic operates in a task where a state machine that is
common to both tiles is used. During steady state, each tile is expected to remain is the
same state. During transitions each tile executes its own state transition logic. Below
outlines the various functions that may need adaptation for a given application.

Listing 43: Locking drivers (power_control.c)
static void driver_control_lock(void)
{
#if ON_TILE(POWER_CONTROL_TILE_NO)

rtos_osal_mutex_get(&gpio_ctx_t0->lock, RTOS_OSAL_WAIT_FOREVER);
#else

rtos_osal_mutex_get(&qspi_flash_ctx->mutex, RTOS_OSAL_WAIT_FOREVER);
/* User logic here */

#endif
}

Listing 44: Unlocking drivers (power_control.c)
static void driver_control_unlock(void)
{
#if ON_TILE(POWER_CONTROL_TILE_NO)

rtos_osal_mutex_put(&gpio_ctx_t0->lock);
#else

/* User logic here */
rtos_osal_mutex_put(&qspi_flash_ctx->mutex);

#endif
}

This implementation also includes function calls that are for evaluation/diagnosis pur-
poses and may be removed for end applications. This includes calls to:

· led_indicate_awake

· led_indicate_asleep

When removing these calls, the associated call to power_control_ind_complete must ei-
ther be moved to another location in the application (this is currently handled in led.c’s
led_task) or logic associated with TASK_NOTIF_MASK_LP_IND_COMPLETE should be re-
moved/disabled. The power_control_ind_complete routine provides a basic means for
the power control task to wait for another asynchronous process to complete before
proceeding with the state transition logic.

53

XCORE-VOICE SOLUTION - Programming Guide

6.2.6.5 Speech Recognition

License The Sensory TrulyHandsFree™ (THF) speech recognition library is Copy-
right (C) 1995-2022 Sensory Inc., All Rights Reserved.

Sensory THF software requires a commercial license granted by Sensory Inc. This soft-
ware ships with an expiring development license. It will suspend recognition after 11.4
hours or 107 recognition events.

Overview The Sensory THF speech recognition engine runs proprietary models to
identify keywords in an audio stream. Models can be generated using VoiceHub.

Twomodels are provided for the purpose of LowPower FFD. The small wakewordmodel
running on tile 1 is approximately 67KB. The commandmodel running on tile 0 is approxi-
mately 289KB. On tile 1, the Sensory runtime and application supporting code consumes
approximately 239KB of SRAM. On tile 0, the Sensory runtime and application supporting
code consumes approximately 210KB of SRAM.

With the command model in flash, the Sensory engine requires a core frequency of at
least 450MHz to keep upwith real time. Additionally, the intent engine that is responsible
for processing the commands must be on the same tile as the flash.

To run with a different model, see the Set Sensory model variables section of
the low_power_ffd.cmake file. There several variables are set pointing to files that
are part of the VoiceHub generated model download. Change these variables to point
to the files you downloaded. This can be done for both the wakeword and command
models. The command model “net.bin” file, because it is placed in flash memory, must
first be nibble swapped. A utility is provided that is part of the host applications built
during install. Run that application with the following command:
nibble_swap <your-model-prod-net.bin> <your-model-prod-net.bin.nibble_swapped>

Make sure run the following commands to rebuild and re-flash the data partition:
make clean
make flash_app_example_low_power_ffd -j

You may also wish to modify the command ID-to-string lookup table which is located in
the src/intent_engine/intent_engine_io.c source file.

Wake Word Dictionary

Table 34: English Language Wake Words

Return code (decimal) Utterance

1 Hello XMOS

54

https://www.sensory.com/
https://voicehub.sensory.com/

XCORE-VOICE SOLUTION - Programming Guide

Command Dictionary

Table 35: English Language Commands

Return code (decimal) Utterance

1 Switch on the TV
2 Channel up
3 Channel down
4 Volume up
5 Volume down
6 Switch off the TV
7 Switch on the lights
8 Brightness up
9 Brightness down
10 Switch off the lights
11 Switch on the fan
12 Speed up the fan
13 Slow down the fan
14 Set higher temperature
15 Set lower temperature
16 Switch off the fan

55

XCORE-VOICE SOLUTION - Programming Guide

Application Integration In depth information on out of the box integration can be
found here: Host Integration

56

XCORE-VOICE SOLUTION - Programming Guide

6.3 Far-field Voice Assistant

6.3.1 Overview

This is the XCORE-VOICE far-field voice assistant example design.

This application can be used out of the box as a voice processor solution, or expanded
to run local wakeword engines.

This application features a full duplex acoustic echo cancellation stage, which can be
provided reference audio via I2S or USB audio. An audio output ASR stream is also avail-
able via I2S or USB audio.

By default, there are two audio integration options. The INT (Integrated) configuration
uses I2S for reference and output audio streams. The UA (USB Accessory) configuration
uses USB UAC 2.0 for reference and output audio streams.

6.3.2 Supported Hardware

This example application is supported on the XK-VOICE-L71 board.

6.3.2.1 Setting up the Hardware This example design requires an XTAG4 and XK-
VOICE-L71 board.

xTAG The xTAG is used to program and debug the device

Connect the xTAG to the debug header, as shown below.

Connect the micro USB XTAG4 and micro USB XK-VOICE-L71 to the programming host.

57

https://www.digikey.co.uk/en/products/detail/xmos/XK-VOICE-L71/15761172

XCORE-VOICE SOLUTION - Programming Guide

58

XCORE-VOICE SOLUTION - Programming Guide

6.3.3 Deploying the Firmware with Linux or macOS

This document explains how to deploy the software using CMake and Make.

6.3.3.1 Building the Host Applications This application requires a host application
to create the flash data partition. Run the following commands in the root folder to build
the host application using your native Toolchain:

Note: Permissions may be required to install the host applications.

cmake -B build_host
cd build_host
make install

The host applicationswill be installed at /opt/xmos/bin, andmay bemoved if desired.
You may wish to add this directory to your PATH variable.

6.3.3.2 Building the Firmware After having your python environment activated, run
the following commands in the root folder to build the I2S firmware:
pip install -r requirements.txt
cmake -B build --toolchain=xmos_cmake_toolchain/xs3a.cmake
cd build
make example_ffva_int_fixed_delay

After having your python environment activated, run the following commands in the root
folder to build the I2S firmware with the Cyberon ASR engine:
pip install -r requirements.txt
cmake -B build --toolchain=xmos_cmake_toolchain/xs3a.cmake
cd build
make example_ffva_int_cyberon_fixed_delay

After having your python environment activated, run the following commands in the root
folder to build the USB firmware:
pip install -r requirements.txt
cmake -B build --toolchain=xmos_cmake_toolchain/xs3a.cmake
cd build
make example_ffva_ua_adec_altarch

6.3.3.3 Running the Firmware Before the firmware is run, the filesystem must be
loaded.

Inside of the build folder root, after building the firmware, run one of:
make flash_app_example_ffva_int_fixed_delay
make flash_app_example_ffva_int_cyberon_fixed_delay
make flash_app_example_ffva_ua_adec_altarch

Once flashed, the application will run.

After the filesystem has been flashed once, the application can be run without flashing.
If changes are made to the filesystem image, the application must be reflashed.

From the build folder run:
xrun --xscope example_ffva_int_fixed_delay.xe
xrun --xscope example_ffva_int_cyberon_fixed_delay.xe
xrun --xscope example_ffva_ua_adec_altarch.xe

6.3.3.4 Upgrading the Firmware

59

XCORE-VOICE SOLUTION - Programming Guide

UA variant The UA variants of this application contain DFU over the USB DFU Class
V1.1 transport method.

To create an upgrade image from the build folder run:
make create_upgrade_img_example_ffva_ua_adec_altarch

Once the application is running, a USB DFU v1.1 tool can be used to perform various
actions. This examplewill demonstratewith dfu-util commands. Installation instructions
for the respective operating systems can be found here.

To verify the device is running run:
dfu-util -l

This should result in an output containing:
Found DFU: [20b1:4001] ver=0001, devnum=100, cfg=1, intf=3, path="3-4.3", alt=2, name="DFU DATAPARTITION",�
↪→serial="123456"
Found DFU: [20b1:4001] ver=0001, devnum=100, cfg=1, intf=3, path="3-4.3", alt=1, name="DFU UPGRADE", serial=
↪→"123456"
Found DFU: [20b1:4001] ver=0001, devnum=100, cfg=1, intf=3, path="3-4.3", alt=0, name="DFU FACTORY", serial=
↪→"123456"

The DFU interprets the flash as 3 separate partitions, the read only factory image, the
read/write upgrade image, and the read/write data partition containing the filesystem.

The factory image can be read back by running:
dfu-util -e -d ,20b1:4001 -a 0 -U readback_factory_img.bin

The factory image can not be written to.

From the build folder, the upgrade image can be written by running:
dfu-util -e -d ,20b1:4001 -a 1 -D example_ffva_ua_adec_altarch_upgrade.bin

The upgrade image can be read back by running:
dfu-util -e -d ,20b1:4001 -a 1 -U readback_upgrade_img.bin

On system reboot, the upgrade image will always be loaded if valid. If the upgrade image
is invalid, the factory image will be loaded. To revert back to the factory image, you can
upload a file containing the word 0xFFFFFFFF.

The data partition image can be read back by running:
dfu-util -e -d ,20b1:4001 -a 2 -U readback_data_partition_img.bin

The data partition image can be written by running:
dfu-util -e -d ,20b1:4001 -a 2 -D readback_data_partition_img.bin

Note that the data partition will always be at the address specified in the initial flashing
call.

INT variant The INT variants of this application contain DFU over I2C.

To create an upgrade image from the build folder run:
make create_upgrade_img_example_ffva_int_fixed_delay

60

https://dfu-util.sourceforge.net/

XCORE-VOICE SOLUTION - Programming Guide

Once the application is running, the xvf_dfu tool can be used to perform various actions.
Installation instructions for Raspbian OS can be found here.

Before running the xvf_dfu host application, the I2C_ADDRESS value in the
file transport_config.yaml located in the same folder as the binary
file xvf_dfu must be updated. This value must match the one set for
appconf_CONTROL_I2C_DEVICE_ADDR in the platform_conf.h file.

The DFU interprets the flash as 3 separate partitions, the read only factory image, the
read/write upgrade image, and the read/write data partition containing the filesystem.

The factory image can be read back by running:
xvf_dfu --upload-factory readback_factory_img.bin

The factory image can not be written to.

From the build folder, the upgrade image can be written by running:
xvf_dfu -d example_ffva_int_fixed_delay_upgrade.bin

The upgrade image can be read back by running:
xvf_dfu --upload-upgrade readback_upgrade_img.bin

The device can be rebooted remotely by running
xvf_dfu --reboot

On system reboot, the upgrade image will always be loaded if valid. If the upgrade image
is invalid, the factory image will be loaded. To revert back to the factory image, you can
upload a file containing the word 0xFFFFFFFF.

The FFVA-INT variants include some version numbers:

· APP_VERSION_MAJOR

· APP_VERSION_MINOR

· APP_VERSION_PATCH

These values are defined in the app_conf.h file, and they can read by running:
xvf_dfu --version

The data partition image cannot be read or write using the xvf_dfu host application.

6.3.3.5 Debugging the Firmware To debug with xgdb, from the build folder run:
xgdb -ex "connect --xscope" -ex "run" example_ffva_int_fixed_delay.xe
xgdb -ex "connect --xscope" -ex "run" example_ffva_ua_adec_altarch.xe

6.3.4 Deploying the Firmware with Native Windows

This document explains how to deploy the software using CMake and Ninja. If you are
not using native Windows MSVC build tools and instead using a Linux emulation tool,
refer to Deploying the Firmware with Linux or macOS.

To installNinja follow install instructions at https://ninja-build.org/ or onWindows install
with winget by running the following commands in PowerShell:

61

https://github.com/xmos/host_xvf_control/blob/main/README.rst
https://ninja-build.org/

XCORE-VOICE SOLUTION - Programming Guide

Install
winget install Ninja-build.ninja
Reload user Path
$env:Path=[System.Environment]::GetEnvironmentVariable("Path","User")

6.3.4.1 Building the Host Applications This application requires a host application
to create the flash data partition. Run the following commands in the root folder to build
the host application using your native Toolchain:

Note: Permissions may be required to install the host applications.

Note: A C/C++ compiler, such as Visual Studio or MinGW, must be included in the path.

Before building the host application, you will need to add the path to the XTC Tools to
your environment.
set "XMOS_TOOL_PATH=<path-to-xtc-tools>"

Then build the host application:
cmake -G Ninja -B build_host
cd build_host
ninja install

The host applications will be installed at %USERPROFILE%\.xmos\bin, and may be
moved if desired. You may wish to add this directory to your PATH variable.

6.3.4.2 Building the Firmware After having your python environment activated, run
the following commands in the root folder to build the I2S firmware:
pip install -r requirements.txt
cmake -G Ninja -B build --toolchain=xmos_cmake_toolchain/xs3a.cmake
cd build
ninja example_ffva_int_fixed_delay

After having your python environment activated, run the following commands in the root
folder to build the I2S firmware with the Cyberon ASR engine:
pip install -r requirements.txt
cmake -G Ninja -B build --toolchain=xmos_cmake_toolchain/xs3a.cmake
cd build
ninja example_ffva_int_cyberon_fixed_delay

After having your python environment activated, run the following commands in the root
folder to build the USB firmware:
pip install -r requirements.txt
cmake -G Ninja -B build --toolchain=xmos_cmake_toolchain/xs3a.cmake
cd build
ninja example_ffva_ua_adec_altarch

6.3.4.3 Running the Firmware Before the firmware is run, the filesystem must be
loaded.

Inside of the build folder root, after building the firmware, run one of:
ninja flash_app_example_ffva_int_fixed_delay
ninja flash_app_example_ffva_int_cyberon_fixed_delay
ninja flash_app_example_ffva_ua_adec_altarch

Once flashed, the application will run.

62

XCORE-VOICE SOLUTION - Programming Guide

After the filesystem has been flashed once, the application can be run without flashing.
If changes are made to the filesystem image, the application must be reflashed.

From the build folder run:
xrun --xscope example_ffva_int_fixed_delay.xe
xrun --xscope example_ffva_int_cyberon_fixed_delay.xe
xrun --xscope example_ffva_ua_adec_altarch.xe

6.3.4.4 Upgrading the Firmware TheUA variants of this application contain DFUover
the USB DFU Class V1.1 transport method. In this section DFU over I2C for the INT vari-
ants is not covered. The INT variants require an I2C connection to the host, andWindows
doesn’t support this feature.

To create an upgrade image from the build folder run:
ninja create_upgrade_img_example_ffva_ua_adec_altarch

Once the application is running, a USB DFU v1.1 tool can be used to perform various
actions. This examplewill demonstratewith dfu-util commands. Installation instructions
for respective operating system can be found here

To verify the device is running run:
dfu-util -l

This should result in an output containing:
Found DFU: [20b1:4001] ver=0001, devnum=100, cfg=1, intf=3, path="3-4.3", alt=2, name="DFU DATAPARTITION",�
↪→serial="123456"
Found DFU: [20b1:4001] ver=0001, devnum=100, cfg=1, intf=3, path="3-4.3", alt=1, name="DFU UPGRADE", serial=
↪→"123456"
Found DFU: [20b1:4001] ver=0001, devnum=100, cfg=1, intf=3, path="3-4.3", alt=0, name="DFU FACTORY", serial=
↪→"123456"

The DFU interprets the flash as 3 separate partitions, the read only factory image, the
read/write upgrade image, and the read/write data partition containing the filesystem.

The factory image can be read back by running:
dfu-util -e -d ,20b1:4001 -a 0 -U readback_factory_img.bin

The factory image can not be written to.

From the build folder, the upgrade image can be written by running:
dfu-util -e -d ,20b1:4001 -a 1 -D example_ffva_ua_adec_altarch_upgrade.bin

The upgrade image can be read back by running:
dfu-util -e -d ,20b1:4001 -a 1 -U readback_upgrade_img.bin

On system reboot, the upgrade image will always be loaded if valid. If the upgrade image
is invalid, the factory image will be loaded. To revert back to the factory image, you can
upload an file containing the word 0xFFFFFFFF.

The data partition image can be read back by running:
dfu-util -e -d ,20b1:4001 -a 2 -U readback_data_partition_img.bin

The data partition image can be written by running:

63

https://dfu-util.sourceforge.net/

XCORE-VOICE SOLUTION - Programming Guide

dfu-util -e -d ,20b1:4001 -a 2 -D readback_data_partition_img.bin

Note that the data partition will always be at the address specified in the initial flashing
call.

6.3.4.5 Debugging the Firmware To debug with xgdb, from the build folder run:
xgdb -ex "connect --xscope" -ex "run" example_ffva_int_fixed_delay.xe
xgdb -ex "connect --xscope" -ex "run" example_ffva_ua_adec_altarch.xe

6.3.5 Modifying the Software

The FFVA example design is highly customizable. This section describes how to modify
the application.

6.3.5.1 Host Integration This example design can be integrated with existing solu-
tions or modified to be a single controller solution.

Out of the Box Integration Out of the box integration varies based on configuration.

INT requires I2S connections to the host. Refer to the schematic, connecting the
host reference audio playback to the ADC I2S and the host input audio to the DAC
I2S. Out of the box, the INT configuration requires an externally generated MCLK of
12.288 MHz. 24.576 MHz is also supported and can be changed via the compile option
MIC_ARRAY_CONFIG_MCLK_FREQ, found in ffva_int.cmake.

UA requires a USB connection to the host.

Support for ASR engine The example_ffva_int_cyberon_fixed_delay
provides an example about how to include an ASR engine, the Cyberon DSPotter™.

Most of the considerations made in the section about the FFD devices are still valid for
the FFVA example. The only notable difference is that the pipeline output in the FFVA
example is on the same tile as the ASR engine, i.e. tile 0.

Note: Both the audio pipeline and the ASR engine process use the same
sample block length. appconfINTENT_SAMPLE_BLOCK_LENGTH and
appconfAUDIO_PIPELINE_FRAME_ADVANCE are both 240.

More information about the Cyberon engine can be found in Speech Recognition - Cy-
beron section.

64

XCORE-VOICE SOLUTION - Programming Guide

6.3.5.2 Design Architecture The application consists of a PDM microphone input
which is fed through the XMOS-VOICE DSP blocks. The output ASR channel is then out-
put over I2S or USB.

6.3.5.3 Device Firmware update (DFU) Design The Device Firmware Update (DFU)
allows updating the firmware of the device fromahost computer, and it can be performed
over I2C or USB. This interface closely follows the principles set out in version 1.1 of the
Universal Serial Bus Device Class Specification for Device Firmware Upgrade, including
implementing the state machine and command structure described there.

TheDFUprocess is internallymanaged by theDFU controllermodulewithin the firmware.
This module is tasked with overseeing the DFU state machine and executing DFU oper-
ations. The list of states and transactions are represented in the diagram in Fig. 1.

The main differences with the state diagram in version 1.1 of Universal Serial Bus Device
Class Specification for Device Firmware Upgrade are:

· the appIDLE and appDETACH states are not implemented, and the device is started
in the dfuIDLE state

· the device goes into the dfuIDLE state when a SET_ALTERNATE message is re-
ceived

· the device is rebooted when a DFU_DETACH command is received.

The DFU allows the following operations:

· download of an upgrade image to the device

· upload of factory and upgrade images from the device

· reboot of the device.

65

https://www.usb.org/sites/default/files/DFU_1.1.pdf
https://www.usb.org/sites/default/files/DFU_1.1.pdf
https://www.usb.org/sites/default/files/DFU_1.1.pdf
https://www.usb.org/sites/default/files/DFU_1.1.pdf

XCORE-VOICE SOLUTION - Programming Guide

Fig. 1: State diagram of the DFU operations

The rest of this section describes the message sequence charts of the supported oper-
ations.

A message sequence chart of the download operation is below:

Note: The end of the image transfer is indicated by a DFU_DNLOADmessage of size 0.

Note: The DFU_DETACHmessage is used to trigger the reboot.

Note: For the I2C implementation, specification of the block number in download is not
supported; all downloadsmust start with block number 0 andmust be run to completion.
The device will track this progress internally.

66

XCORE-VOICE SOLUTION - Programming Guide

Fig. 2: Message sequence chart of the download operation

A message sequence chart of the reboot operation is below:

Note: The DFU_DETACHmessage is used to trigger the reboot.

67

XCORE-VOICE SOLUTION - Programming Guide

Fig. 3: Message sequence chart of the reboot operation

A message sequence chart of the upload operation is below:

Fig. 4: Message sequence chart of the upload operation

68

XCORE-VOICE SOLUTION - Programming Guide

Note: The end of the image transfer is indicated by a DFU_UPLOAD message of size
less than the transport mediummaximum; this is 4096 bytes in UA and 128 bytes in INT.

DFU over USB implementation The UA variant of the device makes use of a
USB connection for handling DFU operations. This interface is a relatively standard,
specification-compliant implementation. The implementation is encapsulated within the
tinyUSB library, which provides a USB stack for the sln_voice.

DFUover I2C implementation The INT variant of the device presents aDFU interface
that may be controlled over I2C.

Fig. 5 shows the modules involved in processing the DFU commands. The I2C task has
a dedicated logical core so that it is always ready to receive and send control messages.
The DFU state machine is driven by the control commands. The DFU state machine
interacts with a separate RTOS task in order to asynchronously perform flash read/write
operations.

Fig. 5: sln_voice Control Plane Components Diagram

69

XCORE-VOICE SOLUTION - Programming Guide

Fig. 6 shows the interaction between the Device Control module and the DFU Servicer.
In this diagram, boxes with the same colour reside in the same RTOS task.

Fig. 6: sln_voice Device Control – Servicer Flow Chart

This diagram shows a critical aspect of the DFU control operation. The Device Control
module, having placed a command on a Servicer’s command queue, waits on the Gate-
way queue for a response. As a result, it ensures processing of a single control command
at a time. Limiting DFU control operation to a single command in-flight reduces the com-
plexity of the control protocol and eliminates several potential error cases.

The FFVA-INT uses a packet protocol to receive control commands and send each cor-
responding response. Because packet transmission occurs over a very short-haul trans-
port, as in I2C, the protocol does not include fields for error detection or correction such
as start-of-frame and end-of-frame symbols, a cyclical redundancy check or an error cor-
recting code. Fig. 7 depicts the structure of each packet.

Fig. 7: sln_voice Control Plane Packet Diagram

Packets containing a response from the FFVA-INT to the host application place a status
value in the first byte of the payload.

Mirroring the USB DFU specification, the INT DFU implementation supports a set of 9
control commands intended to drive the state machine, along with an additional 2 utility
commands:

70

XCORE-VOICE SOLUTION - Programming Guide

Table 36: DFU commands
Name ID LengthPayload Structure Purpose

DFU_DETACH 0 1 Payload unused Write-only command. Restarts
the device. Payload is required
for protocol, but is discarded
within the device. This com-
mand has a defined purpose in
the USB DFU specification, but
in a deviation to that specifica-
tion it is used with I2C simply
to reboot the device. Future
versions of the XMOS DFU-by-
device-control protocol (but not
future versions of this product)
may choose to alter the func-
tion of this command to more
closely align with the USB DFU
specification.

DFU_DNLOAD 1 130 2 bytes length
marker, followed
by 128 bytes of
data buffer

Write-only command. The first
two bytes indicate how many
bytes of data are being transmit-
ted in this packet. These bytes
are little-endian, so byte 0 rep-
resents the low byte and byte 1
represents the high byte of an
unsigned 16b integer. The re-
maining 128 bytes are a data
buffer for transfer to the de-
vice. All control command pack-
ets are a fixed length, and there-
fore all 128 bytes must be in-
cluded in the command, even if
unused. For example, a payload
with length of 100 should have
the first 100 bytes of data set,
but must send an additional 28
bytes of arbitrary data.

continues on next page

71

XCORE-VOICE SOLUTION - Programming Guide

Table 36 – continued from previous page

Name ID LengthPayload Structure Purpose

DFU_UPLOAD 2 130 2 bytes length
marker, followed
by 128 bytes of
data buffer

Read-only command. The first
two bytes indicate how many
bytes of data are being transmit-
ted in this packet. These bytes
are little-endian, so byte 0 rep-
resents the low byte and byte 1
represents the high byte of an
unsigned 16b integer. The re-
maining 128 bytes are a data
buffer of data received from
the device. All control com-
mand packets are a fixed length,
and therefore this buffer will be
padded to length 128 by the de-
vice before transmission. The
device will, as per the USB DFU
specification, mark the end of
the upload process by sending
a “short frame” - a packet with
a length marker less than 128
bytes.

DFU_GETSTATUS 3 5 1 byte represent-
ing device status,
3 bytes represent-
ing the requested
timeout, 1 byte
representing the
next device state.

Read-only command. The first
byte returns the device status
code, as described in the USB
DFU specification in the table
in section 6.1.2. The next 3
bytes represent the amount of
time the host should wait, in ms,
before issuing any other com-
mands. This timeout is used
in the DNLOAD process to al-
low the device time to write to
flash. This value is little-endian,
so bytes 1, 2, and 3 represent
the low, middle, and high bytes
respectively of an unsigned 24b
integer. The final byte returns
the number of the state that the
device will move into immedi-
ately following the return of this
request, as described in the USB
DFU specification in the table in
section 6.1.2.

DFU_CLRSTATUS 4 1 Payload unused Write-only command. Moves
the device out of state 10,
dfuERROR. Payload is required
for protocol, but is discarded
within the device.

continues on next page

72

XCORE-VOICE SOLUTION - Programming Guide

Table 36 – continued from previous page

Name ID LengthPayload Structure Purpose

DFU_GETSTATE 5 1 1 byte represent-
ing current device
state.

Read-only command. The first
(and only) byte represents the
number of the state that the de-
vice is currently in, as described
in the USB DFU specification in
the table in section 6.1.2.

DFU_ABORT 6 1 Payload unused Write-only command. Aborts
an ongoing upload or download
process. Payload is required for
protocol, but is discarded within
the device.

DFU_SETALTERNATE 64 1 1 byte represent-
ing either factory
(0) or upgrade
(1) DFU target
images

Write-only command. Sets
which of the factory or upgrade
images should be targeted
by any subsequent upload or
download commands. Use of
this command entirely resets
the DFU state machine to initial
conditions: the device will
move to dfuIDLE, clear all error
conditions, wipe all internal
DFU data buffers, and reset all
other DFU state apart from the
DFU_TRANSFERBLOCK value.
This command is included to
emulate the SET_ALTERNATE
request available in USB.

continues on next page

73

XCORE-VOICE SOLUTION - Programming Guide

Table 36 – continued from previous page

Name ID LengthPayload Structure Purpose

DFU_TRANSFERBLOCK65 2 2 bytes, repre-
senting the target
transfer block
for an upload
process.

Read/write command. Set-
s/gets a 2 byte value specifying
the transfer block number to use
for a subsequent upload opera-
tion. A complete image may be
conceptually divided into 128-
byte blocks. These blocks may
then be numbered from 0 up-
wards. Setting this value sets
which block will be returned
by a subsequent DFU_UPLOAD
request. This value is ini-
tialised to 0, and autoincre-
ments after each successful
DFU_UPLOAD request has been
serviced. Therefore, to read
a whole image from the start,
there is no need to issue this
command - this command need
only be used to select a spe-
cific section to read. Because
this value is automatically in-
cremented after a DFU_UPLOAD
command is successfully ser-
viced, reading it will give the
value of the next block to be
read (and this will be one greater
than the previous block read, if
it has not been altered in the in-
terim). This value is reset to
0 at the successful completion
of a DFU_UPLOAD process. It
is not reset after a DFU_ABORT,
nor after a DFU_SETALTERNATE
call. This command is included
to emulate the ability in a USB
request to send values in the
header of the request - the de-
vice control protocol used here
does not allow sending any data
with a read request such as
DFU_UPLOAD.

DFU_GETVERSION 88 3 3 bytes, rep-
resenting ma-
jor.minor.patch
version of device

Read-only command. Bytes 0,
1, and 2 represent the major,
minor, and patch versions re-
spectively of the device. This
is a utility command intended to
provide an easy mechanism by
which to verify that a firmware
download has been successful.

continues on next page

74

XCORE-VOICE SOLUTION - Programming Guide

Table 36 – continued from previous page

Name ID LengthPayload Structure Purpose

DFU_REBOOT 89 1 Payload unused Write-only command. Restarts
the device. Payload is required
for protocol, but is discarded
within the device. This is a utility
command intended to provide
a clear and unambiguous inter-
face for restarting the device.
Use of this command should be
preferred over DFU_DETACH for
this purpose.

These commands are then used to drive the state machine described in the Device
Firmware update (DFU) Design.

When writing a custom compliant host application, the use of XMOS’ fwk_rtos library is
advised; the device_control library provided there gives a host API that can communicate
effectively with the FFVA-INT. A description of the I2C bus activity during the execution
of the above DFU commands is provided below, in the instance that usage of the de-
vice_control library is inconvenient or impossible.

The FFVA-INT I2C address is set by default as 0x42. This may be confirmed by examina-
tion of the appconf_CONTROL_I2C_DEVICE_ADDR define in the platform_conf.h
file. The I2C address may also be altered by editing this file. The DFU resource has an
internal “resource ID” of 0xF0. This maps to the register that read/write operations on
the DFU resource should target - therefore, the register to write to will always be 0xF0.

To issue a write command (e.g. DFU_SETALTERNATE):

· First, set up a write to the device address. For a default device configuration, a write
operation will always start by a write token to 0x42 (START, 7 bits of address [0x42],
R/W bit [0 to specify write]), wait for ACK, followed by specifying the register to write
[Resource ID 0xF0] (and again wait for ACK).

· Then, write the command ID (in this example, 64 [0x40]) from the above table.

· Then, write the total transfer size, including the register byte. In this example, that will
be 4 bytes (register byte, command ID, length byte, and 1 byte of payload), so write
0x04.

· Finally, send the payload - e.g. 1 to set the alternate setting to “upgrade”.

· The full sequence for this write command will therefore be START, 7 bits of address
[0x42], 0 (to specify write), hold for ACK, 0xF0, hold for ACK, 0x40, hold for ACK, 0x04,
hold for ACK, 0x01, hold for ACK, STOP.

· To complete the transaction, the device must then be queried; set up a read to
0x42 (START, 7 bits of address [0x42], R/W bit [1 to specify read], wait for ACK).
The device will clock-stretch until it is ready, at which point it will release the clock
and transmit one byte of status information. This will be a value from the enum
control_ret_t from device_control_shared.h, found in modules\rtos\
modules\sw_services\device_control\api.

To issue a read command (e.g. DFU_GETSTATUS):

75

XCORE-VOICE SOLUTION - Programming Guide

· Set up a write to the device; as above, this will mean sending START, 7 bits of device
address [0x42], 0 (to specify write), hold for ACK. Send the DFU resource ID [0xF0],
hold for ACK.

· Then, write the command ID (in this example, 3), bitwise ANDed with 0x80 (to specify
this as a read command) - in this example therefore 0x83 should be sent, and hold for
ACK.

· Then, write the total length of the expected reply. In this example, the command has
a payload of 5 bytes. The device will also prepend the payload with a status byte.
Therefore, the expected reply length will be 6 bytes [0x06]. Hold for ACK.

· Then, issue a repeated START. Follow this with a read from the device: the repeated
START, 7 bits of device address [0x42], 1 (to specify read), hold for ACK. The de-
vice will clock-stretch until it is ready. It will then send a status byte (from the enum
control_ret_t as described above), followed by a payload of requested data - in
this example, the device will send 5 bytes. ACK each received byte. After the last
expected byte, issue a STOP.

It is heavily advised that thosewishing towrite a customhost application to drive the DFU
process for the FFVA-INT over I2C familiarise themselveswith version 1.1 of the Universal
Serial Bus Device Class Specification for Device Firmware Upgrade.

76

https://www.usb.org/sites/default/files/DFU_1.1.pdf
https://www.usb.org/sites/default/files/DFU_1.1.pdf

XCORE-VOICE SOLUTION - Programming Guide

6.3.5.4 Audio Pipeline The audio pipeline in FFVA processes two channel PDM mi-
crophone input into a single output channel, intended for use by an ASR engine.

The audio pipeline consists of 4 stages.

Table 37: FFVA Audio Pipeline

Stage Description Input
Channel
Count

Output
Channel
Count

1 Acoustic Echo Cancellation 2 2
2 Interference Canceller and Voice Noise Ratio 2 1
3 Noise Suppression 1 1
4 Automatic Gain Control 1 1

See the Voice Framework User Guide for more information.

77

XCORE-VOICE SOLUTION - Programming Guide

6.3.5.5 Software Description

Overview There are three main build configurations for this application.

Table 38: FFVA INT Fixed Delay Resources

Resource Tile 0 Tile 1

Total Memory Free 141k 80k
Runtime Heap Memory Free 75k 76k

Table 39: FFVA INT Cyberon Fixed Delay Resources

Resource Tile 0 Tile 1

Total Memory Free 21k 79k
Runtime Heap Memory Free 19k 81k

Table 40: FFVA UA ADEC Resources

Resource Tile 0 Tile 1

Total Memory Free 94k 59k
Runtime Heap Memory Free 54k 83k

The description of the software is split up by folder:

Table 41: FFVA Software Description

Folder Description

Audio Pipelines Preconfigured audio pipelines
examples/ff-
va/bsp_config

Board support configuration setting up software based IO pe-
ripherals

examples/f-
fva/filesys-
tem_support

Filesystem contents for application

examples/ffva/src Main application
modules/asr/in-
tent_engine

Intent engine integration (FFVA INT Cyberon only)

modules/asr/in-
tent_handler

Intent engine output integration (FFVA INT Cyberon only)

examples/ffva/bsp_config This folder contains bsp_configs for the FFVA applica-
tion. More information on bsp_configs can be found in the RTOS Framework documen-
tation.

78

XCORE-VOICE SOLUTION - Programming Guide

Table 42: FFVA bsp_config

Filename/Directory Description

dac directory DAC ports for supported bsp_configs
XCORE-AI-EXPLORER direc-
tory

experimental bsp_config, not recommended for
general use

XK_VOICE_L71 directory default FFVA application bsp_config
bsp_config.cmake cmake for adding FFVA bsp_configs

examples/ffva/filesystem_support This folder contains filesystemcontents for the
FFVA application.

Table 43: FFVA filesystem_support

Filename/Directory Description

demo.txt Example file

Audio Pipelines This folder contains preconfigured audio pipelines for the FFVA ap-
plication.

Table 44: FFVA Audio Pipelines

Filename/Directory Description

api directory include folder for audio pipeline modules
src directory contains preconfigured XMOS DSP audio pipelines
audio_pipeline.cmake cmake for adding audio pipeline targets

Major Components The audio pipeline module provides the application with three
API functions:

Listing 45: Audio Pipeline API (audio_pipeline.h)
void audio_pipeline_init(

void *input_app_data,
void *output_app_data);

void audio_pipeline_input(
void *input_app_data,
int32_t **input_audio_frames,
size_t ch_count,
size_t frame_count);

int audio_pipeline_output(
void *output_app_data,
int32_t **output_audio_frames,
size_t ch_count,
size_t frame_count);

audio_pipeline_init This function has the role of creating the audio pipeline task(s)
and initializing DSP stages.

audio_pipeline_input This function is application defined and populates input audio
frames used by the audio pipeline. In FFVA, this function is defined in main.c.

79

XCORE-VOICE SOLUTION - Programming Guide

audio_pipeline_output This function is application defined and populates input au-
dio frames used by the audio pipeline. In FFVA, this function is defined in main.c.

examples/ffva/src This folder contains the core application source.

Table 45: FFVA src

Filename/Directory Description

gpio_test directory contains general purpose input handling task
usb directory contains intent handling code
ww_model_runner directory contains placeholder wakeword model runner task
app_conf_check.h header to validate app_conf.h
app_conf.h header to describe app configuration
config.xscope xscope configuration file
ff_appconf.h default fatfs configuration header
FreeRTOSConfig.h header to describe FreeRTOS configuration
main.c main application source file

Main The major components of main are:

Listing 46: Main components (main.c)
void startup_task(void *arg)
void tile_common_init(chanend_t c)
void main_tile0(chanend_t c0, chanend_t c1, chanend_t c2, chanend_t c3)
void main_tile1(chanend_t c0, chanend_t c1, chanend_t c2, chanend_t c3)
void i2s_rate_conversion_enable(void)
size_t i2s_send_upsample_cb(rtos_i2s_t *ctx, void *app_data, int32_t *i2s_frame, size_t i2s_frame_size, int32_t�
↪→*send_buf, size_t samples_available)

size_t i2s_send_downsample_cb(rtos_i2s_t *ctx, void *app_data, int32_t *i2s_frame, size_t i2s_frame_size, int32_
↪→t *receive_buf, size_t sample_spaces_free)

startup_task This function has the role of launching tasks on each tile. For those
familiar with XCORE, it is comparable to the main par loop in an XC main.

tile_common_init This function is the common tile initialization, which initializes the
bsp_config, creates the startup task, and starts the FreeRTOS kernel.

main_tile0 This function is the application C entry point on tile 0, provided by the
SDK.

main_tile1 This function is the application C entry point on tile 1, provided by the
SDK.

i2s_rate_conversion_enable This application features 16kHz and 48kHz audio input
and output. TheXMOSDPSblocks operate on 16kHz audio. Input streamsare downsam-
pled when needed. Output streams are upsampled when needed. When in I2S modes
This function is called by the bsp_config to enable the I2S sample rate conversion.

i2s_send_upsample_cb This function is the I2S upsampling callback.

i2s_send_downsample_cb This function is the I2S downsampling callback.

80

XCORE-VOICE SOLUTION - Programming Guide

6.3.5.6 Software Modifications The FFVA example design consists of three major
software blocks, the audio interface, audio pipeline, and placeholder for a keyword han-
dler. This section will go into detail on how to modify each/all of these subsystems.

It is highly recommended to be familiar with the application as awhole before attempting
replacing these functional units.

See Memory and CPU Requirements for more details on the memory footprint and CPU
usage of the major software components.

Replacing XCORE-VOICE DSP Block The audio pipeline can be replaced by making
changes to the audio_pipeline.c file.

It is up to the user to ensure that the input and output frames of the audio pipeline remain
the same, or the remainder of the application will not function properly.

This sectionwill walk through an example of replacing the XMOSNSstage, with a custom
stage foo.

Declaration and Definition of DSP Context Replace:

Listing 47: XMOS NS (audio_pipeline_t0.c)
static ns_stage_ctx_t DWORD_ALIGNED ns_stage_state = {};

With:

Listing 48: Foo (audio_pipeline_t0.c)
typedef struct foo_stage_ctx {

/* Your required state context here */
} foo_stage_ctx_t;

(continues on next page)

81

XCORE-VOICE SOLUTION - Programming Guide

(continued from previous page)

static foo_stage_ctx_t foo_stage_state = {};

DSP Function Replace:

Listing 49: XMOS NS (audio_pipeline_t0.c)
static void stage_ns(frame_data_t *frame_data)
{
#if appconfAUDIO_PIPELINE_SKIP_NS
#else

int32_t DWORD_ALIGNED ns_output[appconfAUDIO_PIPELINE_FRAME_ADVANCE];
configASSERT(NS_FRAME_ADVANCE == appconfAUDIO_PIPELINE_FRAME_ADVANCE);
ns_process_frame(

&ns_stage_state.state,
ns_output,
frame_data->samples[0]);

memcpy(frame_data->samples, ns_output, appconfAUDIO_PIPELINE_FRAME_ADVANCE * sizeof(int32_t));
#endif
}

With:

Listing 50: Foo (audio_pipeline_t0.c)
static void stage_foo(frame_data_t *frame_data)
{

int32_t foo_output[appconfAUDIO_PIPELINE_FRAME_ADVANCE];
foo_process_frame(

&foo_stage_state.state,
foo_output,
frame_data->samples[0]);

memcpy(frame_data->samples, foo_output, appconfAUDIO_PIPELINE_FRAME_ADVANCE * sizeof(int32_t));
}

Runtime Initialization Replace:

Listing 51: XMOS NS (audio_pipeline_t0.c)
ns_init(&ns_stage_state.state);

With:

Listing 52: Foo (audio_pipeline_t0.c)
foo_init(&foo_stage_state.state);

Audio Pipeline Setup Replace:

Listing 53: XMOS NS (audio_pipeline_t0.c)
const pipeline_stage_t stages[] = {

(pipeline_stage_t)stage_vnr_and_ic,
(pipeline_stage_t)stage_ns,
(pipeline_stage_t)stage_agc,

};

const configSTACK_DEPTH_TYPE stage_stack_sizes[] = {
configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_vnr_and_ic) + RTOS_THREAD_STACK_SIZE(audio_pipeline_

↪→input_i),
configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_ns),
configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_agc) + RTOS_THREAD_STACK_SIZE(audio_pipeline_output_

↪→i),
};

With:

82

XCORE-VOICE SOLUTION - Programming Guide

Listing 54: Foo (audio_pipeline_t0.c)
const pipeline_stage_t stages[] = {

(pipeline_stage_t)stage_vnr_and_ic,
(pipeline_stage_t)stage_foo,
(pipeline_stage_t)stage_agc,

};

const configSTACK_DEPTH_TYPE stage_stack_sizes[] = {
configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_vnr_and_ic) + RTOS_THREAD_STACK_SIZE(audio_pipeline_

↪→input_i),
configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_foo),
configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_agc) + RTOS_THREAD_STACK_SIZE(audio_pipeline_output_

↪→i),
};

It is also possible to add or remove stages. Refer to the RTOS Framework documentation
on the generic pipeline sw_service.

Changing the ASR engine THE FFVA provides an example with a specific ASR en-
gine. A different ASR engine can be used by updating and adding the necessary files in
modules\asr.

Replacing Example Design Interfaces It may be desired to have a different input or
output interfaces to talk to a host.

Hybrid Audio Peripheral IO One example use case may be to create a hybrid audio
solutionwhere reference framesor output audio streamsare used over an interface other
than I2S or USB.

Listing 55: Audio Pipeline Input (main.c)
void audio_pipeline_input(void *input_app_data,

int32_t **input_audio_frames,
size_t ch_count,
size_t frame_count)

{
(void) input_app_data;
int32_t **mic_ptr = (int32_t **)(input_audio_frames + (2 * frame_count));

static int flushed;
while (!flushed) {

size_t received;
received = rtos_mic_array_rx(mic_array_ctx,

mic_ptr,
frame_count,
0);

if (received == 0) {
rtos_mic_array_rx(mic_array_ctx,

mic_ptr,
frame_count,
portMAX_DELAY);

flushed = 1;
}

}

rtos_mic_array_rx(mic_array_ctx,
mic_ptr,
frame_count,
portMAX_DELAY);

/* Your ref input source here */
}

Refer to documentation inside the RTOS Framework on how to instantiate different RTOS
peripheral drivers. Populate the above code snippet with your input frame source. Refer
to the default application for an example of populating reference via I2S or USB.

Listing 56: Audio Pipeline Output (main.c)
int audio_pipeline_output(void *output_app_data,

int32_t **output_audio_frames,
size_t ch_count,

(continues on next page)

83

XCORE-VOICE SOLUTION - Programming Guide

(continued from previous page)
size_t frame_count)

{
(void) output_app_data;

/* Your output sink here */

#if appconfWW_ENABLED
ww_audio_send(intertile_ctx,

frame_count,
(int32_t(*)[2])output_audio_frames);

#endif

return AUDIO_PIPELINE_FREE_FRAME;
}

Refer to documentation inside the RTOS Framework on how to instantiate different RTOS
peripheral drivers. Populate the above code snippet with your output frame sink. Refer
to the default application for an example of outputting the ASR channel via I2S or USB.

Different Peripheral IO To add or remove a peripheral IO, modify the bsp_config
accordingly. Refer to documentation inside the RTOS Framework on how to instantiate
different RTOS peripheral drivers.

Application Filesystem Usage This application is equipped with a FAT filesystem
in flash for general use. To add files to the filesystem, simply place them in the filesys-
tem_support directory before running the filesystem setup commands in Deploying the
Firmware with Linux or macOS or Deploying the Firmware with Native Windows.

The application can access the filesystem via the FatFS API.

84

XCORE-VOICE SOLUTION - Programming Guide

6.4 PDM Microphone Aggregator Example

Warning: This example is deprecated and will be moved into a separate Application
Note and may be removed in the next major release.

This example provides a bridge between 16 PDMmicrophones to either TDM16 slave or
USB Audio and targets the xcore-ai explorer board.

This application is to support cases where many microphone inputs need to be sent to
a host where signal processing will be performed. Please see the other examples in
sln_voice where signal processing is performed within the xcore in firmware.

This example uses a modified mic_array with multiple decimator threads to support 16
DDRmicrophones on a single 8 bit input port. The example is written as ‘bare-metal’ and
runs directly on the XCORE device without an RTOS.

6.4.1 Obtaining the app files

Download the main repo and submodules using:
$ git clone --recurse git@github.com:xmos/sln_voice.git
$ cd sln_voice/

6.4.2 Building the app

First make sure that your XTC tools environment is activated.

6.4.2.1 Linux or Mac After having your python environment activated, run the follow-
ing commands in the root folder to build the firmware:
$ pip install -r requirements.txt
$ mkdir build
$ cd build
$ cmake --toolchain ../xmos_cmake_toolchain/xs3a.cmake ..
$ make example_mic_aggregator_tdm -j
$ make example_mic_aggregator_usb -j

Following initial cmake build, as long as you don’t add new source files, you may just
type:
$ make example_mic_aggregator_tdm -j
$ make example_mic_aggregator_usb -j

If you add new source files you will need to run the cmake step again.

6.4.2.2 Windows It is recommended to useNinja or xmake as themake systemunder
Windows. Ninja has been observed to be faster than xmake, however xmake comes
natively with XTC tools. This firmware has been tested with Ninja version v1.11.1.

To install Ninja, follow these steps:

· Download ninja.exe from https://github.com/ninja-build/ninja/releases. This
firmware has been tested with Ninja version v1.11.1.

· Ensure Ninja is on the command line path. You can add to the path permanently by
following these steps https://www.computerhope.com/issues/ch000549.htm. Alter-
natively you may set the path in the current command line session using something
like set PATH=%PATH%;C:\Users\xmos\utils\ninja

85

https://github.com/ninja-build/ninja/releases
https://www.computerhope.com/issues/ch000549.htm

XCORE-VOICE SOLUTION - Programming Guide

After having your python environment activated, run the following commands in the root
folder to build the firmware:
$ pip install -r requirements.txt
$ md build
$ cd build
$ cmake -G "Ninja" --toolchain ..\xmos_cmake_toolchain\xs3a.cmake ..
$ ninja example_mic_aggregator_tdm.xe -j
$ ninja example_mic_aggregator_usb.xe -j

Following initial cmake build, as long as you don’t add new source files, you may just
type:
$ ninja example_mic_aggregator_tdm.xe -j
$ ninja example_mic_aggregator_usb.xe -j

If you add new source files you will need to run the cmake step again.

6.4.3 Running the app

Connect the explorer board to the host and type:
$ xrun example_mic_aggregator_tdm.xe
$ xrun example_mic_aggregator_usb.xe

Optionally, you may use xrun --xscope to provide debug output.

6.4.4 Required Hardware

The application runs on the XCORE-AI Explorer board version 2 (with integrated XTAG
debug adapter). You will require in addition:

· The dual DDR microphone board that attaches via the flat flex connector.

· Header pins soldered into:
· J14, J10, SCL/SDA IOT, the I2S expansion header, MIC data and MIC clock.

· Six jumper wires. Please see the microphone aggregator main documentation for
details on how these are connected.

An oscilloscope will also be handy in case of hardware debug being needed.

Note: You will only be able to inject PDM data to two channels at a time due to a single
pair of microphones on the HW.

If you wish to see all 16 microphones running then an external microphone board with 16
microphones (DDR connected to 8 data lines) is required.

6.4.5 Operation

The design consists of a number of tasks connected via the xcore-ai silicon communica-
tion channels. The decimators in the microphone array are configured to produce a 48
kHz PCM output. The 16 output channels are loaded into a 16 slot TDM slave peripheral
running at 24.576 MHz bit clock or a USB Audio Class 2 asynchronous interface and are
optionally amplified. The TDM build also provides a simple I2C slave interface to allow
gains to be controlled at run-time. The USB build supports USB Audio Class 2 compliant
volume controls.

For the TDMbuild, a simple TDM16master peripheral is included aswell as a local 24.576
MHz clock source so that mic_array and TDM16 slave operation may be tested stan-

86

XCORE-VOICE SOLUTION - Programming Guide

dalone through the use of jumper cables. These may be removed when integrating into
a system with TDM16 master supplied.

6.4.6 Software Architecture

The applications are written on bare metal and use logical cores (hardware threads) to
implement the functional blocks. Each of the tasks are connected using channels pro-
vided in the xcore-ai architecture. The thread diagrams are shown in Fig. 8 and Fig. 9.

Fig. 8: Microphone Aggregator TDM Thread Diagram

Fig. 9: Microphone Aggregator USB Thread Diagram

87

XCORE-VOICE SOLUTION - Programming Guide

6.4.6.1 PDM Capture Both the TDM and USB aggregator examples share a common
PDM front end. This consists of an 8 bit port with each data line connected to two PDM
microphones each configured to provide data on a different clock edge. The 3.072 MHz
clock for the PDM microphones is provided by the xcore-ai device on a 1 bit port and
clocks all PDMmicrophones. The PDM clock is divided down from the 24.576 MHz local
MCLK.

The data collected by the 8 bit port is sent to the lib_mic_array block which de-interleaves
the PDM data streams and performs decimation of the PDM data down to 48 kHz 32 bit
PCMsamples. Due to the large number ofmicrophones the PDMcapture stage uses four
hardware threads on tile[0]; one for the microphone capture and three for decimation.
This is needed to divide the processing workload and meet timing comfortably.

Samples are forwarded to the next stage at a rate of 48 kHz resulting in a packet of 16
PCM samples per exchange.

6.4.6.2 Audio Hub The 16 channels of 48 kHz PCM streams are collected byHub and
are amplified using a saturated gain stage. The initial gain is set to 100, since a gain of
1 sounds very quiet due to the mic_array output being scaled to allow acoustic overload
of themicrophones without clipping within the decimators. This value can be overridden
using the MIC_GAIN_INIT define in app_conf.h.

Additionally for the TDMconfiguration, theHub task also checks for control packets from
I2C which may be used to dynamically update the individual gains at runtime.

A single hardware thread contains the task and a triple buffer scheme is used to ensure
there is always a free buffer available to write into regardless of the relative phase be-
tween the production and consumption of microphone samples.

TheHub task has plenty of timing slack and is a suitable place for adding signal process-
ing if needed.

6.4.6.3 TDM Host Connection The TDM build supports a 16-slot TDM slave Tx pe-
ripheral from the fwk_io sub-module. In this application it runs at 24.576 MHz bit clock
which supports 16 channels of 32 bit, 48 kHz samples per frame.

The TDM component uses a single hardware thread.

For the purpose of debugging a simple TDM 16 Master Rx component is provided. This
allows the transmitted TDM frames from the application to be received and checked
without having to connect an external TDM Master. It may be deleted / disconnected
without affecting the core application.

Note: The simple TDM 16 Master Rx component is not regression tested and is for
evaluation of TDM 16 Slave Tx in this application only.

6.4.6.4 USB Host Connection As an alternative to TDM, a USB host connection is
also supported. The USB connection uses the following specifications:

· USB High Speed (480 Mbps)

· USB Audio Class 2.0

· Asynchronous mode (audio clock is provided by the firmware)

· 24 bit Audio slots

88

XCORE-VOICE SOLUTION - Programming Guide

· 48 kHz Sample Rate

The USB host connection functionality is provided by lib_xua which is the core library of
XMOS’s USB Audio solution.

The USB Audio subsection uses a total of four hardware threads in this application.

6.4.7 Resource Usage

The xcore-ai device has a total resource count of 2 x 524288 Bytes of memory and 2 x 8
hardware threads across two tiles. This application uses around half of the processing
resources and a tiny fraction of the available memory meaning there is plenty of space
inside the chip for additional functionality if needed.

6.4.7.1 TDM Build
Tile Memory Threads

0 25996 5
1 22812 2*
Total 48808 7

· An additional debug TDM Master thread is used on Tile[1] by default which is not
needed in a practical deployment.

6.4.7.2 USB Build
Tile Memory Threads

0 24252 4
1 52116 5
Total 76368 9

6.4.8 Board Configuration

Make the following connections between headers using flying leads:

Host
Connec-
tion

Board
Connec-
tion

Note

MIC CLK J14 ‘00’ This is themicrophone clock which is to be sent to the PDM
microphones from J14.

MIC
DATA

J14 ‘14’ This is the data line for microphones 0 and 8. See below.

I2S LR-
CLK

J10 ‘36’ This is the FSYCNH input for TDMslave. J10 ‘36’ is the TDM
master FSYNCH output for the application.

I2S
MCLK

I2S BCLK MCLK is the 24.576MHz clock which directly drives the
BCLK input for the TDM slave.

I2S DAC J10 ‘38’ I2S DAC is the TDM Slave Tx out which is read by the TDM
Master Rx input on J10.

To access other microphone inputs use the following:

89

XCORE-VOICE SOLUTION - Programming Guide

Mic pair J14 pin

0, 8 14
1, 9 15
2, 10 16
3, 11 17
4, 12 18
5, 13 19
6, 14 20
7, 15 21

For I2C control, make the following connections:

Host Connection Board Connection

SCL IOL Your I2C host SCL.
SDA IOL Your I2C host SDA.
GND Your I2C host ground.

The I2C slave is tested at 100 kHz SCL.

6.4.9 I2C Controlled Volume

For the TDM build, there are 32 registers which control the gain of each of the 16 output
channels. The 8 bit registers contain the upper 8 bit and lower 8 bit of the microphone
gain respectively. The initial gain is set to 100, since 1 is quiet due to themic_array output
being scaled to allow acoustic overload of the microphones without clipping. Typically
a gain of a few hundred works for normal conditions. The gain is only applied after the
lower byte is written.

The gain applied is saturating so no overflow will occur, only clipping.

Register Value

0 Channel 0 upper gain byte
1 Channel 0 lower gain byte
2 Channel 1 upper gain byte
3 Channel 1 lower gain byte
4 Channel 2 upper gain byte
5 Channel 2 lower gain byte
6 Channel 3 upper gain byte
7 Channel 3 lower gain byte
8 Channel 4 upper gain byte
9 Channel 4 lower gain byte
10 Channel 5 upper gain byte
11 Channel 5 lower gain byte
12 Channel 6 upper gain byte

continues on next page

90

XCORE-VOICE SOLUTION - Programming Guide

Table 46 – continued from previous page

Register Value

13 Channel 6 lower gain byte
14 Channel 7 upper gain byte
15 Channel 7 lower gain byte
16 Channel 8 upper gain byte
17 Channel 8 lower gain byte
18 Channel 9 upper gain byte
19 Channel 9 lower gain byte
20 Channel 10 upper gain byte
21 Channel 10 lower gain byte
22 Channel 11 upper gain byte
23 Channel 11 lower gain byte
24 Channel 12 upper gain byte
25 Channel 12 lower gain byte
26 Channel 13 upper gain byte
27 Channel 13 lower gain byte
28 Channel 14 upper gain byte
29 Channel 14 lower gain byte
30 Channel 15 upper gain byte
31 Channel 15 lower gain byte

If using a raspberry Pi as the I2C host you may use the following commands:
$ i2cset -y 1 0x3c 0 0 #Set the gain on mic channel 0 to 50
$ i2cset -y 1 0x3c 1 50 #Set the gain on mic channel 0 to 50

$ i2cget -y 1 0x3c 0 #Get the upper byte of gain on mic channel 0
$ i2cget -y 1 0x3c 1 #Get the lower byte of gain on mic channel 0

$ i2cset -y 1 0x3c 16 1 #Set the gain on mic channel 8 to 256
$ i2cset -y 1 0x3c 15 0 #Set the gain on mic channel 8 to 256

6.5 ASRC Application

6.5.1 Overview

Warning: This example is based on the RTOS framework and drivers. This choice
simplifies the example design, but it leads to high latency in the system. The main
sources of latency are:

· Large block size used for ASRC processing: this is necessary to minimise latency
associated with the intertile context and thread switching overhead.

· Large size of the buffer to which the ASRC output samples are written: a stable
level (half full) must be reached before the start of streaming out over USB.

· RTOS task scheduling overhead between the tasks.

· bInterval of USB in the RTOS drivers is set to 4, i.e. one frame every 1 ms.

· Block based implementation of the USB and I2S RTOS drivers.

The expected latencies for USB at 48 kHz are as follows:

· USB -> ASRC -> I2S: from 8 ms at I2S at 192 kHz to 22 ms at 44.1 kHz

91

XCORE-VOICE SOLUTION - Programming Guide

· I2S -> ASRC -> USB: from 13 ms at I2S at 192 kHz to 19 ms at 44.1 kHz

For a proposed implementation with lower latency, please refer to the bare-metal ex-
amples below:

· AN02003: SPDIF/ADAT/I2S Slave Receive to I2S Slave Bridge with ASRC

This is the XCORE-VOICE Asynchronous Sampling Rate Converter (ASRC) example de-
sign.

The example system implements a stereo I2S Slave and a stereo Adaptive UAC2.0 in-
terface and exchanges data between the two interfaces. Since the two interfaces are
operating in different clock domains, there is an ASRC block between them that con-
verts from the input to the output sampling rate. There are two ASRC blocks, one each in
the I2S -> ASRC -> USB and USB -> ASRC -> I2S path, as illustrated in the ASRC example
top level system diagram. The diagram also shows the rate calculation path, whichmoni-
tors and computes the instantaneous ratio between the ASRC input and output sampling
rate. The rate ratio is used by the ASRC task to dynamically adapt filter coefficients using
spline interpolation in its filtering stage.

Fig. 10: ASRC example top level system diagram

The I2S Slave interface is a stereo 32 bit interface supporting sampling rates between
44.1 kHz - 192 kHz.

The USB interface is a stereo, 32 bit, 48 kHz, High-Speed, USB Audio Class 2, Adaptive
interface.

The ASRC algorithm implemented in the lib_src library is used for the ASRC processing.
The ASRC processing is block based andworks on a block size of 244 samples per chan-
nel in the I2S -> ASRC -> USB path and 96 samples per channel in the USB -> ASRC -> I2S
path.

6.5.1.1 Supported Hardware This example application is supported on the XK-
VOICE-L71 board. In addition to the XK-VOICE-L71 board, it requires an XTAG4 to program
and debug the device.

92

https://www.xmos.com/file/AN02003
https://www.xmos.com/xcore-voice
https://github.com/xmos/lib_src/
https://www.xmos.com/xk-voice-l71
https://www.xmos.com/xk-voice-l71

XCORE-VOICE SOLUTION - Programming Guide

To demonstrate the audio exchange between the I2S and USB interface, the XK-VOICE-
L71 device needs to be connected to an I2SMaster device. To do this, connect the BCLK,
MCLK, DOUT, DIN pins of the RASPBERRY PI HOST INTERFACE header (J4) on the XK-
VOICE-L71 to the I2S Master. The table XK-VOICE-L71 RPI host interface header (J4) con-
nections lists the pins on the XK-VOICE-L71 RPI header and the signals on the I2SMaster
that they need to be connected to.

Table 47: XK-VOICE-L71 RPI host interface header (J4) connections

XK-VOICE-L71 PI header pin Signal to connect to on the I2S Master
board

12 BLCK output
35 LRCK output
38 I2S Data input to the Master
40 I2S Data output from the Master
One of the GND pins (6, 14, 20, 30, 34, 9,
25 or 39)

GND on the I2S Master board

6.5.1.2 Obtaining the app files Download the main repo and submodules using:
$ git clone --recurse git@github.com:xmos/sln_voice.git
$ cd sln_voice/

6.5.1.3 Building the app First install and source the XTC version: 15.3.0 tools. For
example with version 15.2.1, the output should be something like this:
$ xcc --version
xcc: Build 19-198606c, Oct-25-2022
XTC version: 15.2.1
Copyright (C) XMOS Limited 2008-2021. All Rights Reserved.

Linux or Mac To build for the first time, activate your python environment, run
cmake to create the make files:
$ pip install -r requirements.txt
$ mkdir build
$ cd build
$ cmake --toolchain ../xmos_cmake_toolchain/xs3a.cmake ..
$ make example_asrc_demo -j

Following initial cmake build, for subsequent builds, as long as new source files are not
added, just type:
$ make example_asrc_demo -j

cmake needs to be rerun to discover any new source files added.

Windows It is recommended to use Ninja or xmake as the make system under Win-
dows. Ninja has been observed to be faster than xmake, however xmake comes natively
with XTC tools. This firmware has been tested with Ninja version v1.11.1.

To install Ninja, follow these steps:

· Download ninja.exe from here. This firmware has been tested with Ninja version
v1.11.1.

· Ensure Ninja is on the command line path. It can be added to the path permanently
by following the steps listed here. Alternatively, set the path in the current command

93

https://github.com/ninja-build/ninja/releases
https://www.computerhope.com/issues/ch000549.htm

XCORE-VOICE SOLUTION - Programming Guide

line session using something like set PATH=%PATH%;C:\Users\xmos\utils\
ninja

To build for the first time, activate your python environment, run cmake to create the
make files:
$ pip install -r requirements.txt
$ md build
$ cd build
$ cmake -G "Ninja" --toolchain ..\xmos_cmake_toolchain\xs3a.cmake ..
$ ninja example_asrc_demo.xe

Following initial cmake build, for subsequent builds, as long as new source files are not
added, just type:
$ ninja example_asrc_demo.xe

cmake needs to be rerun to discover any new source files added.

6.5.1.4 Running the app To run the app, either xrun or xflash can be used. Connect
the XK-VOICE-L71 board to the host and type the following to run with real-time debug
output enabled:
$ xrun --xscope example_asrc_demo.xe

or to flash the application so that it always boots after a power cycle:
$ xflash example_asrc_demo.xe

6.5.1.5 Operation When the example runs, the audio received by the device on the
I2S Slave interface at the I2S interface sampling rate is sample rate converted using the
ASRC to the USB sampling rate and streamed out from the device over the USB interface.
Similarly, the audio streamed out by the USB host into the USB interface of the device
is sample rate converted to the I2S interface sampling rate and streamed out from the
device over the I2S Slave interface.

This example supports dynamic changes of the I2S interface sampling frequency at run-
time. It detects the I2S sampling rate change and reconfigures the system for the new
rate.

94

XCORE-VOICE SOLUTION - Programming Guide

6.5.2 Software Architecture

The ASRC demo application is a two tile application developed to run on the XK-VOICE-
L71 board running at a core frequency of 600 MHz.

It is a FreeRTOS based application where all the application blocks are implemented as
FreeRTOS tasks.

Each tile has 5 baremetal cores dedicated to runningRTOS tasks and since all processing
is done within RTOS tasks, each core has 120 MHz of bandwidth available.

6.5.2.1 Task diagram The ASRC example task diagram shows the RTOS tasks and
other components that make up the system.

Fig. 11: ASRC example task diagram

The tasks can roughly be categorised as belonging to the USB driver, I2S driver or the
application code categories. The actual ASRC processing happens in four tasks across
the two tiles; the usb_audio_out_asrc task, i2s_audio_recv_asrc task, and two instances
of asrc_one_channel task, one on each tile. This is described in more detail in the Appli-
cation components section below.

Most of the tasks are involved in the ASRC processing data path, while a few are involved
in monitoring the input and output data rates and computing the rate ratio, which is the
ratio between the frequencies at the input and output of the ASRC tasks. The rate ratio
is provided to the ASRC tasks every asrc_process_frame() call. Details about the
rate ratio calculation are described in the rate_server section below.

6.5.2.2 USB Driver components This application presents a stereo, 48 kHz, 32 bit,
high-speed, Adaptive UAC2.0 USB interface. It has two endpoints, Endpoint 0 for control
and Endpoint 1 for bidirectional isochronous USB audio. The USB application level driver
is TinyUSB based.

The usb_xud_thread, usb_isr, usb_task and usb_adaptive_clk_manager implement the
USB driver. Together, these tasks handle the USB communication with the host and also
monitor the average USB rate seen by the device. The average USB rate is used for cal-

95

https://docs.tinyusb.org/en/latest/

XCORE-VOICE SOLUTION - Programming Guide

culating the rate ratios that are sent to the asrc_process_frame() function. This is
described more in the rate_server section.

The usb_xud_thread runs XUD_Main which implements the USB HIL driver. It runs on
a dedicated bare metal core so cannot be preempted by other RTOS tasks. It interfaces
with the USB app level thread (usb_task) via shared memory and dedicated channels
between the XUD_Main and each endpoint.

XUD_Main notifies the connected endpoint of a USB transfer completion through an
interrupt on the respective channel. This interrupt is serviced by the usb_isr routine.

usb_task implements the app level USB driver functionality. The app level USB driver
is based on TinyUSB which hooks into the application by means of callback func-
tions. The usb_isr task is triggered by the interrupt and parses the data transferred
from XUD and places it on a queue that the usb_task blocks on for further processing.
For example, on completion of an EP1 OUT transfer, the transfer completion gets no-
tified on the usb_xud_thread -> usb_isr -> usb_task path, and the usb_task calls the
tud_audio_rx_done_post_read_cb() function to have the application process
the data received from the host. On completion of an EP1 IN transfer, the transfer com-
pletion again follows the usb_xud_thread -> usb_isr -> usb_task path, and usb_task calls
the tud_audio_tx_done_pre_load_cb() callback function to have the application
load the EP1 IN data for the next transfer.

samples_to_host_stream_buf and samples_from_host_stream_buf are circular
buffers shared between the application and the USB driver and allow for de-
coupling one from the other. The data frame received over USB from the host
is written to the samples_from_host_stream_buf by the TinyUSB callback
function tud_audio_rx_done_post_read_cb(), while the application reads
USB_TO_I2S_ASRC_BLOCK_LENGTH samples of data out of it. Similarly, the applica-
tion writes the ASRC output block of data to the samples_to_host_stream_buf
while the TinyUSB callback function tud_audio_tx_done_pre_load_cb() reads
from it to send one frame of data to the USB host.

usb_adaptive_clk_manager task is responsible for calculating the average USB rate as
seen by the device. The average rate is calculated over a 16-second moving window.
The averaging smooths out any jitter seen in the USB SOF timestamps that are used for
calculating the rate.

6.5.2.3 I2S Driver components This application presents a stereo 32 bit, I2S Slave
interface that supports I2S sampling rates of 44.1, 48, 88.2, 96, 176.4 and 192 kHz. The
I2S driver supports tracking dynamic sampling rate (SR) changes and recalculates the
nominal sampling rate after detecting a SR change event. It also continuously monitors
the timespan over which a fixed number of samples are received. This information is
then used by the application for calculating the average I2S rate seen by the device.

i2s_slave_thread, I2S send_buffer and receive_buffer and rtos_i2s_isr make up the I2S
driver components.

i2s_slave_thread implements the I2SHIL driver. TheHIL level driver calls into the applica-
tion callback functions for i2s_init(), i2s_restart_check(), i2s_receive()
and i2s_send(). These functions, in addition to handling I2S send and receive data,
also detect sampling rate changes and gather information for tracking the average sam-
pling rate.

I2S send_buffer and receive_buffer are circular buffers shared between the driver and
the application and contain data received over I2S (receive_buffer) and data the ap-
plication wants to send over I2S (send_buffer). These buffers allow for decoupling
the I2S HIL driver from the ASRC application. The driver reads from and writes to these

96

https://docs.tinyusb.org/en/latest/

XCORE-VOICE SOLUTION - Programming Guide

buffers at the I2S sample rate while the application can read and write blocks of data to
these buffers equal to the ASRC input or output block size.

The application calls rtos_i2s_rx() to read I2S_TO_USB_ASRC_BLOCK_LENGTH
samples of data from the receive_buffer. The i2s_slave_thread independently calls
i2s_receive() callback function to write a sample of data as it gets received over I2S.

Similarly, the application calls rtos_i2s_tx() to write ASRC output size block of data
into the send_buffer. Meanwhile, the driver independently calls the callback function
i2s_send() to read a sample of data to send over the I2S.

rtos_i2s_isr interrupt is used to ensure that the application calls to rtos_i2s_rx()
and rtos_i2s_tx() block only on RTOS primitives when waiting for read data to be
available or buffer space to be available when writing data.

6.5.2.4 Application components usb_audio_out_asrc, i2s_audio_recv_asrc,
asrc_one_channel_task, usb_to_i2s_intertile, i2s_to_usb_intertile and the rate_server
tasks make up the non-driver components of the application.

usb_audio_out_asrc performs ASRC on data received from the USB host
to the device. It waits to get notified by the TinyUSB callback function
tud_audio_rx_done_post_read_cb() when there are one or more ASRC input
blocks (96 USB samples) of data in the samples_from_host_stream_buf. It does
ASRC processing of the first channel while coordinatingwith the asrc_one_channel_task
for processing the second channel in parallel and sends the processed output to the
other tile on the inter-tile context.

i2s_audio_recv_asrc performs ASRC on data received over the I2S interface by the de-
vice. It blocks on the rtos_i2s_rx() function to receive one ASRC input block (244 I2S
samples) of data from I2S and performs ASRC on one channel while coordinating with
the asrc_one_channel_task for processing the second channel in parallel. It then sends
the processed output to the other tile on the inter-tile context.

asrc_one_channel_task performs ASRC on a single channel of data. There is one of
these on each tile. It waits on an RTOS message queue for an ASRC input block to be
available, does ASRC processing on the block and posts the completion notification on
another message queue.

usb_to_i2s_intertile task receives the ASRC output data generated by
usb_audio_out_asrc over the inter-tile context onto the I2S tile and writes it to the
I2S send_buffer. It has other rate-monitoring related responsibilities that are
described in the rate_server section.

i2s_to_usb_intertile task receives the ASRC output data generated by
i2s_audio_recv_asrc over the inter-tile context onto the USB tile and writes it to
the USB samples_to_host_stream_buf. It has other rate-monitoring related
responsibilities that are described in the rate_server section.

The I2S -> ASRC -> USB data path diagram shows the application tasks involved in the
I2S -> ASRC -> USB path processing and their interaction with each other.

The USB -> ASRC -> I2S data path diagram shows the application tasks involved in the
USB -> ASRC -> I2S path processing and their interaction with each other.

rate_server The ASRC process_frame API requires the caller to calculate and
send the instantaneous ratio between the ASRC input and output rate. The rate_server is
responsible for calculating these rate ratios for both USB -> ASRC -> I2S and I2S -> ASRC
-> USB directions.

97

XCORE-VOICE SOLUTION - Programming Guide

Fig. 12: I2S -> ASRC -> USB data path

Fig. 13: USB -> ASRC -> I2S data path

98

XCORE-VOICE SOLUTION - Programming Guide

Additionally, the application also monitors the average buffer fill levels of the buffers
holding ASRC output to prevent any overflows or underflows of the respective buffer. A
gradual drift in the buffer fill level indicates that the rate ratio is being under or over cal-
culated by the rate_server. This could happen either due to jitter in the actual rates or
precision limitations when calculating the rates.

The average fill level of the buffer is monitored and a closed-loop error correction factor
is calculated to keep the buffer level at an expected stable level. The error estimated
based on the buffer fill level is used to compute the estimated rate ratio from the initial
rate ratio. This estimated rate ratio is then sent to the ASRC process_frame() API.
estimated_rate_ratio = initial_rate_ratio + buffer_based_correction_factor

The rate_server runs on the I2S tile (tile 1) and is periodically triggered from the USB tile
(tile 0) by the usb_to_i2s_intertile task. The rate_server is triggered once after every 16
frames are written to the samples_to_host_stream_buf.

The following information is needed for calculating the rate ratios:

1. The average I2S rate

2. The average USB rate

3. An error factor computed based on the USB samples_to_host_stream_buf fill
level

4. An error factor computed based on the I2S send buffer fill level

5. A USB mic_interface_open flag indicating if the USB host is streaming out from
the device, since the rate ratio in the I2S -> ASRC -> USB direction is calculated only
when the host is reading data from the device

6. A USB spkr_interface_open flag indicating if the USB host is streaming into the
device, since the rate ratio in the USB -> ASRC -> I2S direction is calculated only when
the host is sending data to the device

Of the above, the USB related information (2, 3, 5 and 6 above) is available on the USB
tile. When triggering the rate_server, the i2s_to_usb_intertile task gets this information,
either calculating it or getting it through shared memory from other USB tasks on the
same tile, and sends it to the rate_server over the inter-tile context using the structure
below.
typedef struct
{

int64_t buffer_based_correction;
float_s32_t usb_data_rate;
bool mic_itf_open;
bool spkr_itf_open;

}usb_rate_info_t;

The I2S related information (1 and 4 above) is calculated in the rate_server itself with
information available for calculating these available through shared memory from other
tasks on this tile.

After calculating the rates, the rate_server sends the rate ratio for the USB -> ASRC -> I2S
side to the usb_to_i2s_intertile task over the inter-tile context and it is made available
to the usb_audio_out_asrc task through shared memory. The I2S -> ASRC -> USB side
rate ratio is alsomade available to the i2s_audio_recv_asrc task through sharedmemory
since it runs on the same tile as the rate server.

99

XCORE-VOICE SOLUTION - Programming Guide

The Rate calculation code flow diagram shows the code flow during the rate ratio calcu-
lation process, focussing on the usb_to_intertile task that triggers the rate_server and
the rate_server task where the rate ratios are calculated.

Fig. 14: Rate calculation code flow

6.5.2.5 Handling I2S sampling rate change events The I2S driver monitors the I2S
nominal rate and provides this information to the application. When an I2S sampling rate
change happens:

· The ASRC instances on both tiles are re-initialised with the new sampling rate.

· The buffers that are used for buffer-fill-level based correction are reset. Streaming out
of them is paused while zeroes are sent out over both USB and I2S. Once the buffers
fill to a stable level, streaming out from them resumes.

· The average buffer level calculation state is reset and the average buffer level calcu-
lation starts afresh. New stable buffer levels are also calculated and the buffer levels
are now corrected against these new stable averages.

Note that the device starts with the nominal I2S sampling rate set to zero. Device startup
therefore follows the same path as an I2S sampling rate change where the sampling
rate goes from zero to first detected nominal sampling rate. Everything described above
therefore also applies to the device startup behaviour.

6.5.2.6 Handling USB speaker interface close -> open events When the USB host
stops streaming to the device and then starts again, this event is detected through calls to

100

XCORE-VOICE SOLUTION - Programming Guide

the tud_audio_set_itf_close_EP_cb and tud_audio_set_itf_cb functions.
The ASRC output buffer in the USB -> ASRC -> I2S path (I2S send_buffer) is reset. Ze-
roes are then sent over I2S until the buffer fills to a stable level, when we resume stream-
ing out of this buffer to send samples over I2S. The average buffer calculation state for
the I2S send_buffer is also reset and a new stable average is calculated against which
the average buffer levels are corrected.

6.5.2.7 Handling USB mic interface close -> open events If the USB host stops
streaming from the device and then starts again, this event is detected through
calls to the tud_audio_set_itf_close_EP_cb and tud_audio_set_itf_cb
functions. The ASRC output buffer in the I2S -> ASRC -> USB is reset (USB
samples_to_host_stream_buf). Zeroes are streamed to the host until the
buffer fills to a stable level, when we resume streaming out of this buffer
to send samples over USB. The average buffer calculation state for the USB
samples_to_host_stream_buf is also reset and a new stable average is calculated
against which the average buffer levels are corrected.

6.5.3 Resource Usage

6.5.3.1 Memory Out of the 524288 bytes ofmemory available per tile, this application
uses approximately 262000 bytes of memory on Tile 0 and 208000 bytes of memory on
Tile 1.

6.5.3.2 Chanends This application uses 19 chanends on the USB tile (tile 0) and 11
chanends on the I2S tile (tile 1)

The chanend use for both tiles is described in the Tile 0 chanend usage and Tile 1 chanend
usage tables.

Tile 0

Table 48: Tile 0 chanend usage

Resource Chanends used

RTOS scheduler 5 (one per bare-metal core dedicated to RTOS)
RTOS USB driver 10 (2 per endpoint, per direction. 2 for SOF input)
Intertile contexts 3
xscope 1

Tile 1

Table 49: Tile 1 chanend usage

Resource Chanends used

RTOS scheduler 5 (one per bare-metal core dedicated to RTOS)
RTOS I2S driver 2
Intertile contexts 3
xscope 1

Intertile contexts The application uses 3 intertile contexts for cross tile communi-
cation.

101

XCORE-VOICE SOLUTION - Programming Guide

· A dedicated intertile context for sending ASRC output data from the I2S tile to the USB
tile.

· A dedicated intertile context for sending ASRC output data from the USB tile to the I2S
tile.

· The intertile context for all other cross tile communication.

6.5.3.3 CPU Profiling the CPU usage for this application using an RTOS friendly pro-
filing tool is still TBD. However, profiling some application tasks has taken place. These
numbers along with some already existing profiling numbers for the drivers are listed in
the Tile 0 tasks MIPS and Tile 1 tasks MIPS tables. Each tile has 5 bare-metal cores being
used for running RTOS tasks so each core has a fixed bandwidth of 120 MHz available.

Tile 0

Table 50: Tile 0 tasks MIPS

RTOS Task MIPS

XUD 120 (from CPU Requirements (@ 600
MHz))

ASRC in the USB -> ASRC -> I2S path for
the worst case of 48 kHz to 192 kHz up-
sampling

85

usb_task 24
i2s_to_usb_intertile 14

Tile 1

Table 51: Tile 1 tasks MIPS

RTOS Task MIPS

I2S Slave 96 (from CPU Requirements (@ 600
MHz))

ASRC in the I2S -> ASRC -> USB path
for the worst case of 192 kHz to 48 kHz
downsampling

75

usb_to_i2s_intertile 0.7
rate_server 19

7 Speech Recognition Ports

Ports of the Sensory and Cyberon speech recognition libraries are provided.

102

XCORE-VOICE SOLUTION - Programming Guide

Table 52: Speech Recognition Ports

Filename/Directory Description

modules/asr directory include folder for ASR modules and ports
module/asr/sensory direc-
tory

contains the Sensory library and associated port
code

module/asr/Cyberon direc-
tory

contains the Cyberon library and associated port
code

modules/asr/CmakeLists.txt CMakeLists file for adding ASR port targets

8 Memory and CPU Requirements

8.1 Memory

The table below lists the approximatememory requirements for the larger software com-
ponents. All memory use estimates in the table below are based on the default config-
uration for the feature. Alternate configurations will require more or less memory. The
estimates are provided as guideline to assist application developers judge the memory
cost of extending the application or benefit of removing an existing feature. It can be
assumed that the memory requirement of components not listed in the table below are
under 5 kB.

Table 53: Memory Requirements

Component Memory Use (kB)

Stereo Adaptive Echo Canceler (AEC) 275
Sensory Speech Recognition Engine 180
Cyberon Speech Recognition Engine 125
Interference Canceler (IC) + Voice To
Noise Ratio Estimator (VNR)

130

USB 20
Noise Suppressor (NS) 15
Adaptive Gain Control (AGC) 11

8.2 CPU

The table below lists the approximate CPU requirements in MIPS for the larger software
components. All CPU use estimates in the table below are based on the default con-
figuration for the feature. Alternate configurations will require more or less MIPS. The
estimates are provided as guideline to assist application developers judge the MIP cost
of extending the application or benefits of removing an existing feature. It can be as-
sumed that the memory requirement of components not listed in the table below are
under 1%.

The following formula was used to convert CPU% to MIPS:

MIPS = (CPU% / 100%) * (600 MHz / 5 cores)

103

XCORE-VOICE SOLUTION - Programming Guide

Table 54: CPU Requirements (@ 600 MHz)

Component CPU Use (%) MIPS Use

USB XUD 100 120
I2S (slave mode) 80 96
Stereo Adaptive Echo
Canceler (AEC)

80 96

Sensory Speech Recogni-
tion Engine

80 96

Cyberon Speech Recogni-
tion Engine

72 87

Interference Canceler (IC)
+ Voice To Noise Ratio Es-
timator (VNR)

25 30

Noise Suppressor (NS) 10 12
Adaptive Gain Control
(AGC)

5 6

9 How-Tos

This section includes instructions on anticipated or common software modifications.

9.1 Changing the input and output sample rate

In the example designapp_conf.h file, changeappconfAUDIO_PIPELINE_SAMPLE_RATE
to either 16000 or 48000.

9.2 I2S AEC reference input audio & USB processed audio output

The FFVA example design includes 2 basic configurations; INT and UA. The INT config-
uration is setup with I2S for input and output audio. The UA configuration is setup with
USB for input and output audio. This HOWTO explains how to modify the FFVA example
design for I2S input audio and USB output audio.

In the ffva_ua.cmake file, changing the appconfAEC_REF_DEFAULT to
appconfAEC_REF_I2S will result in the expected input frames.
set(FFVA_UA_COMPILE_DEFINITIONS

${APP_COMPILE_DEFINITIONS}
appconfI2S_ENABLED=1
appconfUSB_ENABLED=1
appconfAEC_REF_DEFAULT=appconfAEC_REF_I2S

appconfI2S_MODE=appconfI2S_MODE_MASTER
MIC_ARRAY_CONFIG_MCLK_FREQ=24576000

)

For integrating with I2S there are a few other differences from the default UA configura-
tion. When integrating with an external Raspberry Pi BCLK and LRCLK, you will want the
following FFVA_UA_COMPILE_DEFINITIONS:
set(FFVA_UA_COMPILE_DEFINITIONS

${APP_COMPILE_DEFINITIONS}
appconfI2S_ENABLED=1
appconfUSB_ENABLED=1
appconfAEC_REF_DEFAULT=appconfAEC_REF_I2S

appconfI2S_MODE=appconfI2S_MODE_SLAVE
appconfEXTERNAL_MCLK=0
appconfI2S_AUDIO_SAMPLE_RATE=48000

(continues on next page)

104

XCORE-VOICE SOLUTION - Programming Guide

(continued from previous page)
MIC_ARRAY_CONFIG_MCLK_FREQ=12288000

)

appconfI2S_AUDIO_SAMPLE_RATE can also be 16000. Only 48k and 16k conversions
is supported in FFVA.

The default FFVA INT device doesn’t require an external MCLK, but this setting can be
changed by setting appconfEXTERNAL_MCLK=1. In this case the FFVA example appli-
cation will sit at initialization until it can lock on to that clock source, so it MUST be active
during boot.

Since the FFVA example application is not receiving reference audio through USB in this
configuration, USB adaptivemode will not adapt to the input. By default, FFVAwill output
the configured nominal rate.

If you enable appconfAEC_REF_DEFAULT=appconfAEC_REF_I2S and
appconfI2S_MODE=appconfI2S_MODE_MASTER. You need to invert I2S_DATA_IN
and I2S_MIC_DATA in the bsp_config/XK_VOICE_L71/XK_VOICE_L71.xn file to
have the reference audio play properly.

Lastly, with I2S enabled the DAC is always initialized by the FFVA example application. If
FFVA cannot be the I2C host then it is up to the host to initialize the DAC, like in the AVS
demo.

10 Frequently Asked Questions

10.1 CMake hides XTC Tools commands

If you want to customize the XTC Tools commands like xflash and xrun, you can see
what commands CMake is running by adding VERBOSE=1 to your build command line.
For example:
make run_my_target VERBOSE=1

10.2 fatfs_mkimage: not found

This issue occurs when the fatfs_mkimage host utility cannot be found. The most
common cause for these issues are an incomplete installation of XCORE-VOICE.

Ensure that the host applications build and install has been completed. Verify that the
fatfs_mkimage binary is installed to a location on PATH, or that the default application
installation folder is added to PATH.

10.3 FFD pdm_rx_isr() Crash

One potential issue with the low power FFD application is a crash after adding new code:
xrun: Program received signal ET_ECALL, Application exception.

[Switching to tile[1] core[1]]
0x0008a182 in pdm_rx_isr ()

This generally occurs when there is not enough processing time available on tile 1, or
when interrupts were disabled for too long, causing the mic array driver to fail to meet
timing. To resolve reduce the processing time, minimize context switching and other
actions that require kernel locks, and/or increase the tile 1 core clock frequency.

105

XCORE-VOICE SOLUTION - Programming Guide

10.4 Debugging low-power

The clock dividers are set high to minimize core power consumption. This can make
debugging a challenge or impossible. Even adding a simple printf can cause critical
timing to be missed. In order to debug with the low-power features enabled, temporarily
modify the clock dividers in app_conf.h.
#define appconfLOW_POWER_SWITCH_CLK_DIV 1 // Resulting clock freq 600MHz.
#define appconfLOW_POWER_OTHER_TILE_CLK_DIV 1 // Resulting clock freq 600MHz.
#define appconfLOW_POWER_CONTROL_TILE_CLK_DIV 1 // Resulting clock freq 600MHz.

10.5 xcc2clang.exe: error: no such file or directory

Those strange characters at the beginning of the path are known as a byte-order mark
(BOM). CMake adds them to the beginning of the response files it generates during the
configure step. Why does it add them? Because the MSVC compiler toolchain requires
them. However, some compiler toolchains, like gcc and xcc, do not ignore the BOM. Why
did CMake think the compiler toolchain was MSVC and not the XTC toolchain? Because
of a bug in which certain versions of CMake and certain versions of Visual Studio do not
play nice together. The good news is that this appears to have been addressed in CMake
version 3.22.3. Update to CMake version 3.22.2 or newer.

11 Licenses

11.1 XMOS

All original source code is licensed under the XMOS License.

11.2 Third-Party

Additional third party code is included under the following copyrights and licenses:

Table 55: Third Party Module Copyrights & Licenses

Module Copyright & License

dr_wav Copyright (C) 2022 David Reid, licensed under a public
domain license

FatFS Copyright (C) 2017 ChaN, licensed under a BSD-style li-
cense

FreeRTOS Copyright (c) 2017 Amazon.com, Inc., licensed under the
MIT License

Sensory TrulyHandsfree™ The Sensory TrulyHandsfree™ speech recognition li-
brary is Copyright (C) 1995-2022 Sensory Inc. and is pro-
vided as an expiring development license. Commercial
licensing is granted by Sensory Inc.

Cyberon DSpotter™ For any licensing questions about Cyberon DSpotter™
speech recognition library please contact Cyberon Cor-
poration.

TinyUSB Copyright (c) 2018 hathach (tinyusb.org), licensed under
the MIT license

106

https://github.com/xmos/sln_voice/blob/develop/LICENSE.rst
https://github.com/mackron/dr_libs
https://github.com/mackron/dr_libs/blob/master/LICENSE
https://github.com/mackron/dr_libs/blob/master/LICENSE
http://elm-chan.org/fsw/ff/00index_e.html
https://github.com/xmos/fwk_rtos/blob/develop/modules/sw_services/fatfs/thirdparty/LICENSE.txt
https://github.com/xmos/fwk_rtos/blob/develop/modules/sw_services/fatfs/thirdparty/LICENSE.txt
https://freertos.org/
https://github.com/xmos/FreeRTOS/blob/release/xcore-smp/LICENSE.md
https://www.sensory.com/
https://www.cyberon.com.tw/
https://www.cyberon.com.tw/
https://docs.tinyusb.org/en/latest/index.html
https://github.com/hathach/tinyusb/blob/1bba2c0fc3bce05e9fbe4ff23dda30283d08574d/LICENSE

XCORE-VOICE SOLUTION - Programming Guide

Copyright © 2024, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is providing
it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. Xmos
Ltd.makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, xCore, xcore.ai, and the XMOS logo are registered trademarks of XMOS Ltd in the United Kingdom and other
countries andmay not be usedwithout written permission. Company and product namesmentioned in this document
are the trademarks or registered trademarks of their respective owners.

107

	Product Description
	Key Features
	Obtaining the Hardware
	Obtaining the Software
	Development Tools
	Application Demonstrations
	Source Code

	Prerequisites
	Windows
	macOS

	Example Designs
	Far-field Voice Local Command
	Low Power Far-field Voice Local Command
	Far-field Voice Assistant
	PDM Microphone Aggregator Example
	ASRC Application

	Speech Recognition Ports
	Memory and CPU Requirements
	Memory
	CPU

	How-Tos
	Changing the input and output sample rate
	I2S AEC reference input audio & USB processed audio output

	Frequently Asked Questions
	CMake hides XTC Tools commands
	fatfs_mkimage: not found
	FFD pdm_rx_isr() Crash
	Debugging low-power
	xcc2clang.exe: error: no such file or directory

	Licenses
	XMOS
	Third-Party

