
Using the XTA With Assembly

IN THIS DOCUMENT

· Assembly Directives

· Branch Table Example

· Core Start/Stop Example

When writing programs in assembly it is still possible to label code to make it
portable using assembler directives.

1 Assembly Directives

The XMOS Timing Analyzer directives add timing metadata to ELF sections.

· xtabranch specifies a comma-separated list of locations that may be branched
to from the current location.

· xtacall marks the current location as a function call with the specified label.

· xtaendpoint marks the current location as an endpoint with the specified label.

· xtalabel marks the current location using the specified label.

· xtacorestart specifies that a logical core may be initialized to start executing
at the current location.

· xtacorestop specifies that a logical core executing the instruction at the current
location will not execute any further instructions.

The xtacall, xtaendpoint, xtalabel directives are intended for use by the compiler
only. They are used to link lines of source code with assembly instructions. All
other XTA functionality provided by these directives (timing, exclusions) should be
possible through the use of labels in the assembly code.

Strings used by the XTA for xtacall, xtaendpoint and xtalabel must not contain
spaces.

2 Branch Table Example

If a branch table is written in assembly, branch target information must be added
for the XTA to be able to analyze the assembly properly . This information is given
in the form of a .xtabranch directive. For example, consider the code in Figure 1.

The XTA is not able to determine where the bru instruction will branch to because it
is branching off a register value which is an argument to main. With the directive the

Publication Date: 2013/11/13 REV A

XMOS © 2013, All Rights Reserved



Using the XTA With Assembly 2/3

. type f, @function

. globl f
f:

entsp 1
. xtabranch Ltarget1 , Ltarget2 , Ltarget3

bru r0
Ltarget1 :

bl taskA
retsp 1

Ltarget2 :
bl taskB
retsp 1

Ltarget3 :
bl taskC
retsp 1

Figure 1:

Setting
branch
targets

XTA can consider the bru instruction to have the three targets (Ltarget1, Ltarget2,
Ltarget3) and the XTA can successfully time the function.

3 Core Start/Stop Example

By default the XTA, assumes that the initial logical core starts executing at the RAM
base. However, if developers add another core in assembly, they also need to add
.xtacorestart and .xtacorestop directives for the XTA to know that the code is
reachable. For example, consider the code in Figure 2.

. type main , @function

. globl main
main :

getr r1 , XS1 \ _RES \ _TYPE \ _CORE
ldap r11 , secondCore
init t[r1 ]:pc , r11
start t[r1]
ldc r1 , 0

loop :
bf r1 , loop
retsp 0

secondCore :
. xtacorestart

ldc r0 , 1
tsetmr r1 , r0

. xtacorestop
freet

Figure 2:

Setting core
start and

stop points.

With the xtacorestart and xtacorestop directives the XTA knows that the code
after the label secondCore is reachable and hence can be analyzed.

REV A



Using the XTA With Assembly 3/3

Copyright © 2013, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

REV A


	Assembly Directives
	Branch Table Example
	Core Start/Stop Example

