
Using XMOS Makefiles

IN THIS DOCUMENT

· Projects, Applications and Modules

· The Application Makefile

· The Project Makefile

· The module_build_info file

Projects created by the XMOS Development Environment have their build controlled
by Makefiles. These Makefiles execute the build using the program xmake which is
a port of Gnu Make1. The build is executable either from within the XDE or from
the command line by calling xmake directly.

You do not need to understand the Gnu Makefile language to develop applications
using the XMOS tools. The common XMOS Makefile provides support for projects,
applications and modules. You need only specify the required properties of the
build in Project Makefiles and Application Makefiles.

1 Projects, Applications and Modules

An application is made up of source code unique to the application and, optionally,
source code from modules of common code or binary libraries. When developing
an application, the working area is described in terms of workspaces, projects,
applications and modules.

Workspace
A workspace is a container for several projects.

Projects
A project is a directory possibly containing several applications and modules
plus other files relating to a particular project. A project may contain the
code for a particular board or reference design or be a software component
containing modules for other projects to use.

Applications
An application is a directory containing source files and a Makefile that builds
into a single executable (.xe) file. By convention application directories start
with the prefix app_. These applications appear at the top level in the project
explorer in the XDE.

Modules
A module is a directory containing source files and/or binary libraries. The
source does not build to anything by itself but can be used by applications. by

1http://www.gnu.org/software/make/

Publication Date: 2012/3/20 Document Number: X6348A

XMOS © 2012, All Rights Reserved

http://www.gnu.org/software/make/


Using XMOS Makefiles 2/6

convention module directories start with the prefix module_. These modules
appear at the top level in the project explorer in the XDE.

X6348A



Using XMOS Makefiles 3/6

1.1 Example Structure

An example workspace structure is shown below.

sw_avb/
app_avb_demo1/
app_avb_demo2/
module_avb1/
module_avb2/
doc/

sc_xtcp/
module_xtcp/
module_zeroconf/

sc_ethernet/
module_ethernet/

There are three projects within this workspace: sw_avb, sc_xtcp and sc_ethernet.
The sw_avb project contains two applications, each of which builds to a separate
binary. These applications can use source from the modules within the projects
and can use modules from their own project (module_avb1 and module_avb2) and
from other projects (module_xtcp, module_zeroconf and module_ethernet).

Alternatively, a workspace may be structured in the following way:

app_avb_demo1/
app_avb_demo2/
module_avb1/
module_avb2/
doc/
module_xtcp/
module_zeroconf/
module_ethernet/

In this case, all applications and modules are at the top level of the workspace.

2 The Application Makefile

Every application directory should contain a file named Makefile that includes
the common XMOS Makefile. The common Makefile controls the build, by default
including all source files within the application directory and its sub-directories.
The application Makefile supports the following variable assignments.

XCC_FLAGS[_config]
Specifies the flags passed to xcc during the build. This option sets
the flags for the particular build configuration config. If no suffix is
given, it sets the flags for the default build configuration.

XCC_C_FLAGS[_config]
If set, these flags are passed to xcc instead of XCC_FLAGS for all .c
files. This option sets the flags for the particular build configuration

X6348A



Using XMOS Makefiles 4/6

config. If no suffix is given, it sets the flags for the default build
configuration.

XCC_ASM_FLAGS[_config]
If set, these flags are passed to xcc instead of XCC_FLAGS for all
.s or .S files. This option sets the flags for the particular build
configuration config. If no suffix is given, it sets the flags for the
default build configuration.

XCC_MAP_FLAGS[_config]
If set, these flags are passed to xcc for the final link stage instead
of XCC_FLAGS. This option sets the flags for the particular build
configuration config. If no suffix is given, it sets the flags for the
default build configuration.

XCC_FLAGS_filename
Overides the flags passed to xcc for the filename specified. This
option overides the flags for all build configurations.

VERBOSE If set to 1, enables verbose output from the make system.

SOURCE_DIRS Specifies the list of directories, relative to the application directory,
that have their contents compiled. By default all directories are
included.

INCLUDE_DIRS
Specifies the directories to look for include files during the build.
By default all directories are included.

LIB_DIRS Specifies the directories to look for libraries to link into the ap-
plication during the build. By default all directories are included.

EXCLUDE_FILES
Specifies a space-separated list of source file names (not including
their path) that are not compiled into the application.

USED_MODULES
Specifies a space-separated list of module directories that are com-
piled into the application. The module directories should always be
given without their full path irrespective of which project they come
from, for example:

USED_MODULES = module_xtcp module_ethernet

MODULE_LIBRARIES
This option specifies a list of preferred libraries to use from modules
that specify more than one. See X4954 for details.

X6348A

http://www.xmos.com/docnum/X4954#makefile-libraries


Using XMOS Makefiles 5/6

3 The Project Makefile

As well as each application having its own Makefile, the project should have a
Makefile at the top-level. This Makefile controls building the applications within
the project. It has one variable assignment within it to do this:

BUILD_SUBDIRS
Specifies a space-separated list of application directories to build.

X6348A



Using XMOS Makefiles 6/6

4 The module_build_info file

Each module directory should contain a file named module_build_info. This file
informs an application how to build the files within the module if the application
includes the module in its build. It can optionally contain several of the following
variable assignments.

DEPENDENT_MODULES
Specifies the dependencies of the module. When an application
includes a module it will also include all its dependencies.

MODULE_XCC_FLAGS
Specifies the options to pass to xcc when compiling source files
from within the current module. The definition can reference the
XCC_FLAGS variable from the application Makefile, for example:

MODULE_XCC_FLAGS = $(XCC_FLAGS) -O3

MODULE_XCC_XC_FLAGS
If set, these flags are passed to xcc instead of MODULE_XCC_FLAGS
for all .xc files within the module.

MODULE_XCC_C_FLAGS
If set, these flags are passed to xcc instead of MODULE_XCC_FLAGS
for all .c files within the module.

MODULE_XCC_ASM_FLAGS
If set, these flags are passed to xcc instead of MODULE_XCC_FLAGS
for all .s or .S files within the module.

OPTIONAL_HEADERS
Specifies a particular header file to be an optional configuration
header. This header file does not exist in the module but is provided
by the application using the module. The build system will pass the
a special macro __filename_h_exists__ to xcc if the application
has provided this file. This allows the module to provide default
configuration values if the file is not provided.

Copyright © 2012, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

X6348A


	Projects, Applications and Modules
	The Application Makefile
	The Project Makefile
	The module_build_info file

