
Use xTIMEcomposer to time a program

IN THIS DOCUMENT

· Launch the timing analyzer

· Time a section of code

· Specify timing requirements

· Add program execution information

· Validate timing requirements during compilation

The xCORE Timing Analyzer lets you determine the time taken to execute code on
your target platform. Due to the deterministic nature of the xCORE architecture, the
tools can measure the shortest and longest time required to execute a section of
code. When combined with user-specified requirements, the tools can determine at
compile-time whether all timing-critical sections of code are guaranteed to execute
within their deadlines.

1 Launch the timing analyzer

To load a program under control of the timing analyzer, follow these steps:

1. Select a project in the Project Explorer.

2. Choose Run · Time Configurations.

3. In the left panel, double-click XCore Application. xTIMEcomposer creates a
new configuration and displays the default settings in the right panel.

4. xTIMEcomposer tries to identify the target project and executable for you. To
select one yourself, click Browse to the right of the Project text box and select
your project in the Project Selection dialog box. Then click Search Project and
select the executable file in the Program Selection dialog box.

You must have previously compiled your program without any errors for the
executable to be available for selection.

5. In the Name text box, enter a name for the configuration.

6. To save the configuration and launch the timing analyzer, click Time.

xTIMEcomposer loads your program in the timing analyzer and opens it in the
Timing perspective. In this perspective the editor is read-only, to ensure the
relationship between the binary and source code remains consistent.

Publication Date: 2013/11/11 REV D

XMOS © 2013, All Rights Reserved



Use xTIMEcomposer to time a program 2/6

Figure 1:

Timing
perspective

xTIMEcomposer remembers the configuration last used to load your program. To
load XTA the program later using the same settings, just click the XTA button. To
use a different configuration, click the arrow to the right of the XTA button and
select a configuration from the drop-down list.

2 Time a section of code

A route consists of the set of all paths through which control can flow between
two points (or endpoints) in a program. Each route has a best-case time, in which
branches always follow the path that takes the shortest time to execute, and a
corresponding worst-case time.

To specify a route and analyze it, follow these steps:

1. Right-click on an endpoint marker in the editor margin and choose Set from
endpoint. xTIMEcomposer displays a green dot in the top-right quarter of the
marker.

2. Right-click on an endpoint marker and choose Set to endpoint. xTIMEcomposer
displays a red dot in the bottom-right quarter of the marker.

You can specify a start point above an end point. You can also specify a start
point at or below an end point, defining a route whose paths flow out and then
back into the function. This is typical of functions called multiple times or from
within a loop.

3. Click the Analyze Endpoints button in the main toolbar. xTIMEcomposerE analyzes all the paths in the specified route, displaying a tree-like representation
in the lower panel of the Routes view and a graph-like representation in the
Structure tab of the Visualizations view.

Alternatively, to analyze the time taken to execute a function, just click theF Analyze Function button in the main toolbar and select a function from the
drop-down list.

REV D



Use xTIMEcomposer to time a program 3/6

xTIMEcomposer provides endpoint markers for all statements whose order is
guaranteed to be preserved during compilation. These statements include I/O
operations and function calls.

2.1 Visualize a route

The Routes view displays a structural representation of the route. Each time you
analyze a route, an entry is added to the top panel. Click on a route to view it in
the bottom panel. It is represented using the following nodes:

A source-level function.

A list of nodes that are executed in sequence.

A set of nodes that are executed conditionally.?

A loop consisting of a sequence of nodes in which the last node can branch back
to the first node.

A block containing a straight-line sequence of instructions.

A single machine instruction.

2.2 The Visualizations view

The Visualizations view provides graphical representations of the route. The
Structure tab represents the route as a line that flows from left to right, as shown
in the example below. The route forks into multiple paths whenever the code
branches, and all paths join at its end. The best-case timing path is highlighted in
green, the worst-case path in red, and all other paths are colored gray.

Function name

Best path

Worst path

End

Start

Instruction block

Loop

Unknown

Path
Figure 2:

Visualizations
view

In both the Route view and Structure view, you can hover over a node to display a
summary of its timing properties. Click on a node to highlight its source code in

REV D



Use xTIMEcomposer to time a program 4/6

the editor, or double-click to go to the line at the start of the node. In the Structure
view, double-click on a function name to expand or collapse it.

3 Specify timing requirements

A timing requirement specifies how long the paths in a route may take to execute
for the program to behave correctly. In the top panel of the Routes view, the status
of each route is indicated by an icon to the left of its name:

No timing requirement is specified.

A timing requirement is specified and met.

A timing requirement is specified and met, subject to all I/O instructions being
ready to execute.

A timing requirement is specified and not met.

To specify a timing requirement, right-click on a route and choose Set timing
requirements. A dialog box opens. Enter the maximum time in which the paths
must execute in either ns, cycles or MHz and click OK. xTIMEcomposer updates
the status of the route.

4 Add program execution information

Under some conditions the timing analyzer is unable to prove timing without
additional information. Examples of common conditions include:

· The route contains an I/O instruction that can pause for an unknown length of
time.

· The route contains a loop with a data-dependent exit condition.

· A path fails to meet timing, but the path is only executed as a result of an error
condition and is not therefore timing critical.

In these cases you can provide the timing analyzer additional information about the
execution of your program. Armed with this additional information, the analyzer
may then be able to prove that a route’s timing requirement is met. Information
you can provide includes:

· The number of loop iterations: Right-click on a loop node and choose Set loop
iterations to display a dialog box. Enter a maximum loop count and click OK.

· The maximum pause time for an I/O instruction: Right-click on an instruction
node and choose Set instruction time to display a dialog box. Enter a value,
select a unit of time/rate (such as nanoseconds or MHz) and click OK.

· Exclude a path from the route: Right-click on a node and choose Exclude.

REV D



Use xTIMEcomposer to time a program 5/6

4.1 Refine the worst-case analysis

By default, the timing analyzer assumes that a route always follows branches that
take the longest time to execute. If you know that this is not the case, for example
through inspection during simulation or a formal analysis of your program, you can
refine the parameters used by the analyzer. Refinements you can make include:

· Specifying an absolute execution time for a function call: Right-click on a
function node and choose Set function time to open a dialog box. Enter a time
and click OK.

· Specifying an absolute time for a path: Select a path by holding down Ctrl
(Windows, Linux) or (Mac) and clicking on two instruction nodes, then right-
click and choose Set path time to open a dialog box. Enter a time and click
OK.

· Specifying the number of times a node is executed: By default, the analyzer
assumes that the number of times a node is executed is the multiplication of
each loop count in its scope. To change the iteration count to be an absolute
value, right-click on a node and choose Set loop scope to open a dialog box.
Select Make scope absolute and click OK.

· Specifying the number of times a conditional is executed in a loop: By de-
fault, the analyzer assumes that a conditional node always follows the path that
takes the longest time to execute. To specify the number of times a conditional
target is executed, right-click on the target node and choose Set loop path
iterations to open a dialog box. Enter the number of iterations and click OK.

5 Validate timing requirements during compilation

Once you’ve specified the timing requirements for your program, including any
refinements about its execution, you can generate a script that checks these
requirements at compile-time.

To create a script that checks all timing requirements specified in the Routes view,
follow these steps:

1. Click the Generate Script button.

2. In the Script location text box, enter a filename for the script. The filename
must have a .xta extension.

3. To change the names of the pragmas added to the source file, modify their
values in the Pragma name fields.

4. Click OK to save the script and update your source code. xTIMEcomposer adds
the script to your project and opens it in the editor. It also updates your source
files with any pragmas required by the script.

The next time you compile your program, the timing requirements are checked
and any failures are reported as compilation errors. Double-click on a timing error
to view the failing requirement in the script.

REV D



Use xTIMEcomposer to time a program 6/6

Figure 3:

Script
Options

dialog box

Copyright © 2013, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

REV D


	Launch the timing analyzer
	Time a section of code
	Specify timing requirements
	Add program execution information
	Validate timing requirements during compilation

