
Tools developer’s guide

Document Number: XM000140A

Publication Date: 2015/4/21

XMOS © 2015, All Rights Reserved.

Tools developer’s guide 2/37

Table of Contents

1 Introduction 4
1.1 xTIMEcomposer development tools . 5
1.2 How to read this guide . 5

2 XMOS 32-bit application binary interface 6
2.1 Execution environment . 6
2.2 Types . 7

2.2.1 Enumerated types . 7
2.2.2 Bit fields . 8

2.3 Function calling . 8
2.3.1 Function returns . 8
2.3.2 Array-bound parameters . 9
2.3.3 Transaction functions . 9
2.3.4 Select functions . 9

2.4 The null constant . 10
2.5 Global arrays . 10
2.6 Register assignments . 10
2.7 Stack frame . 11
2.8 Function entry and exit . 11

2.8.1 Example . 11
2.9 Channel communication . 12

2.9.1 Transactions . 12
2.10 Constant pool . 13
2.11 Data region . 13
2.12 Clock blocks . 14
2.13 Processor-specific relocation types . 14
2.14 Sections . 17
2.15 Processor-specific extensions . 17

2.15.1 Expression section . 17
2.15.2 Type information . 18
2.15.3 Other Symbols . 19

2.16 XS1-specific requirements . 24
2.16.1 Types . 24
2.16.2 Functions . 24
2.16.3 Constant pool/data region . 24

2.17 XS2-specific requirements . 24
2.17.1 Types . 24
2.17.2 Functions . 24
2.17.3 Constant pool/data region . 25
2.17.4 Sections . 25
2.17.5 Identifying dual issue code . 25

3 XMOS executable (XE) file format 26
3.1 Binary format . 26

3.1.1 XE header . 26
3.1.2 Sectors . 26

3.2 Booting an XE File . 29

4 XMOS system call interface 31

XM000140A

Tools developer’s guide 3/37

4.1 System calls . 31
4.2 System call interface . 35
4.3 Exceptions . 37

XM000140A

1 Introduction

IN THIS CHAPTER

· xTIMEcomposer development tools

· How to read this guide

The XMOS architecture enables a combination of interface, digital signal processing
and control functions to be performed in software. An XMOS device consists of
one or more xCORE tiles, each comprising a multicore microcontroller with tightly
integrated I/O and on-chip memory. Each xCORE tile has hardware support for
executing several logical cores concurrently and has dedicated instructions for
input and output.

Logical Core 0

xCORE Tile 0 xCORE Tile 1

C
h
an

n
el

 E
n
d
s

C
h
an

n
el

 E
n
d
s

Logical Core 1

Logical Core 2

Logical Core3

Logical Core 4

Logical Core 6

Logical Core 5

Logical Core 7

Memory Memory

Logical Core 0

Logical Core 1

Logical Core 2

Logical Core 3

Logical Core 6

Logical Core 4

Logical Core 5

Logical Core 7

Switch

Link to another device

Po
rt

s

Po
rt

s

Pi
n
s

Pi
n
s

Figure 1:

XMOS
Architecture

The timing of instruction execution is deterministic, with each logical core guaran-
teed a slice of the processing. The logical cores can execute computations, handle
real-time I/O operations and respond to multiple events. The I/O pins can be
sampled or driven using a single instruction, and data rates can be controlled using
timers or clocks. A high-performance switch enables communication between
xCORE tiles and makes it easy to construct systems from multiple devices.

XM000140A

Tools developer’s guide 5/37

1.1 xTIMEcomposer development tools

The xTIMEcomposer development tools support a standard embedded development
flow and are built on industry-standard platforms. The tools let designers use
C, C++, or xC to program devices, or assembly if absolute control is required.
Programs are typically debugged using the XMOS port of the GNU Debugger (GDB).
A static timing analyzer can be used to validate that all real-time requirements are
met for the target device at compile time, helping designers close timing without
the need for complex test benches.

Board utilities are provided for loading programs onto hardware. During develop-
ment, programs are typically loaded from a host PC over JTAG. In a manufactured
design, programs are typically loaded from flash memory. The tools can encrypt
programs on flash and can burn a secure bootloader and keys into on-chip OTP
memory, ensuring program and device authenticity. The tools also support in-field
upgrades, allowing multiple firmware releases to be managed over the product life
cycle.

The formats and conventions used by the xTIMEcomposer tools form a well-defined
interface for passing data between programs. By conforming to this interface,
third-party developers are guaranteed that their tools are compatible with the
xTIMEcomposer tools.

1.2 How to read this guide

This guide is divided into three sections of reference material:

· Chapter 2 documents the XMOS application binary interface (ABI), which speci-
fies how to produce code which is compatible with the libraries supplied with the
xTIMEcomposer tools and with code produced by the XMOS compiler collection.

· Chapter 3 documents the XMOS executable file format, which specifies how to
produce executables that can be used with tools such as XSIM, XGDB, XFLASH
and XBURN.

· Chapter 4 documents the XMOS system call interface, which specifies the
mechanism by which system services used by tools, such as debuggers and
simulators, are interfaced on the host development system.

XM000140A

2 XMOS 32-bit application binary interface

IN THIS CHAPTER

· Execution environment

· Types

· Function calling

· The null constant

· Global arrays

· Register assignments

· Stack frame

· Function entry and exit

· Channel communication

· Constant pool

· Data region

· Clock blocks

· Processor-specific relocation types

· Sections

· Processor-specific extensions

· XS1-specific requirements

· XS2-specific requirements

The executable and linkable Format (ELF)1 defines a linking interface for compiled
programs. This document is the processor-specific supplement for use with ELF
on 32-bit xCORE multicore microcontrollers.2 It is intended for linking objects
compiled from xC,3 C/C++ and assembly code.4

The following sections detail general ABI requirements for xCORE targets; specific
requirements for XS1 and XS2 architectures are detailed in §2.16 and §2.17.

2.1 Execution environment

The execution environment is a single xCORE tile within a global shared memory
system. The program image consists of a set of ELF loadable segments.

1System V Application Binary Interface, Edition 4.1. http://www.caldera.com/developers/devspecs/gabi41.pdf.
2The XMOS XS1 Architecture. http://www.xmos.com/published/xs1_en.
3Programming XC on XMOS Devices. http://www.xmos.com/published/xc_en.
4The XMOS xTIMEcomposer User Guide. http://www.xmos.com/published/xtools_en.

XM000140A

http://www.caldera.com/developers/devspecs/gabi41.pdf
http://www.xmos.com/published/xs1_en
http://www.xmos.com/published/xc_en
http://www.xmos.com/published/xtools_en

Tools developer’s guide 7/37

2.2 Types

The distinct xC/C data types are described in Figure 2. Sizes and alignments are
given in bits. In addition:

· by default the char type is unsigned,

· long is the same as int,

· long double is the same as double,

· function pointers are the same as data pointers.

Type Size Alignment xC ANSI C Meaning

char 8 8 Y Y Character type

short 16 16 Y Y Short integer

int 32 32 Y Y Native integer

long 32 32 Y Y Long integer

long long 64 * Y Y Long long integer

float 32 32 Y Y 32-bit IEEE float

double 64 * Y Y 64-bit IEEE float

void 32 32 N Y Data pointer

chanend 32 32 Y N Channel end resource identifier

port 32 32 Y N Port resource identifier

timer 32 32 Y N Software timer

hwtimer_t 32 32 Y N Timer resource identifier

clock 32 32 Y N Clock resource identifier

Key:

* Target dependent.

Figure 2:

Data Types

Structure types pack according to the regular SYSV rules:

· field offsets are aligned according to the field’s type;

· a structure is aligned according to its most aligned member;

· tail padding is added to make the structure’s size a multiple of its alignment.

2.2.1 Enumerated types

Each enumerated type is associated with an underlying integer type that determines
its size and alignment. If the enumerated type has a negative enumeration constant
the underlying type is the first type in the following list in which all its enumeration
constants can be represented: int, long and long long. Otherwise, the underlying
type is the first type in the following list in which its the enumeration constants
can be represented: unsigned int, unsigned long and unsigned long long.

XM000140A

Tools developer’s guide 8/37

2.2.2 Bit fields

The following declared types may be specified in a bit field’s declaration: char,
short, int, long and enum.

If an enum type has negative values, enum bit-fields are signed. Otherwise, enum bit
fields are unsigned. All other bit-field types are signed unless explicitly marked as
being unsigned.

Bit fields pack from the least significant end of the allocation unit. Each non-zero
bit field is allocated at the first available bit offset that allows the bit field to be
placed in a properly aligned container of the declared type. Non-bit-field members
are allocated at the first available offset satisfying their declared type’s size and
alignment constraints.

A zero-width bit field forces padding until the next bit offset aligned with the bit
field’s declared type.

Unnamed bit fields are allocated space in the same manner as named bit fields.

A structure is aligned according to each of the bit field’s declared types in addition
to the types of any other members. Both zero-width and unnamed bit fields are
taken into account when calculating a structure’s alignment.

2.3 Function calling

Function calling uses the first four registers (r0 to r3) to pass parameters. Addi-
tional parameters are passed on the stack.

Aggregates and data types with a size greater than an int are passed using a
pointer, with the exceptions:

· that objects of type long long and double are passed as if they consisted of two
32-bit values, the least significant half passed first;

· that the passing of aggregates is target dependent (see §2.16 and §2.17).

The callee must make a copy of the structure if it needs to be modified. Scalar
types smaller than 32 bits are passed as zero- or sign-extended 32-bit values.

Variadic arguments are treated the same as other functions, except that any bound
parameters (see §2.3.2) are omitted.

2.3.1 Function returns

Function returning uses the first four registers to pass return values. Additional
return values are passed on the stack, in the caller’s frame (see §2.7).

Except where otherwise stated, data types with size greater than int and all
structures are returned as follows: for each such type in the return-type list, the
caller passes as an implicit parameter the address of the return destination. This
address must be valid and must not alias the storage location of any object visible

XM000140A

Tools developer’s guide 9/37

to the callee. Implicit structure return parameters are placed before the formal
parameters and are ordered by their types in the return list. Scalar types smaller
than 32 bits are returned as zero- or sign-extended 32-bit values.

Objects of type long long and double are returned as if they consisted of two
32-bit values, the least significant half returned first.

2.3.2 Array-bound parameters

If the size of the first dimension of an array is missing then this value is passed
to the function as an implicit parameter. A list of implicit bound parameters is
constructed from the formals (in the order that they appear) and are placed after
the formals and any return parameters. For example, for the function:

void f(int x[][10], int y);

the parameters are passed in registers as follows:

register r0 r1 r2

parameter &x y x.bound

If the size of the bound is unknown to the caller then the value MAX_INT is passed.
This ensures that any run-time array bound checks will not fail when an index is
valid.

2.3.3 Transaction functions

Transactions functions take an implicit parameter which represents the state of the
last_out variable described in §2.9.1. This parameter is passed before the formal
parameters. The updated value of the last_out variable as returned as an implicit
return value.

2.3.4 Select functions

A select function provides multiple entry points. The name of the symbol for the
first entry point is the same as the name of the function. This entry point is used
when the select function is called outside of a select statement. In this context, the
call to the select function uses the same calling convention as a function taking
the same list of parameters and returning void.

The name of the symbol for the second entry point is the name of the function
with the suffix .enable. This entry point is used when the select function is called
from a select statement and is called during the event enable phase of the select.
When called via this entry point, the select function must configure the resources
that appear in cases of the select function so they generate events when ready. In
addition, each resource should be configured so that execution jumps to an event
handler this executes the corresponding select case body if the event is taken.
After configuring all its resources the select function shall return.

XM000140A

Tools developer’s guide 10/37

After the resources are configured the function containing the top-level select
statement shall enable events. This may result in execution to jumping to an event
handler. This is considered to be a indirect call a function taking no arguments
having no return values that respects the standard register assignment conventions
(see Figure 3). The event handler must handle the event before returning a second
time by jumping to the value the link register had when the event was taken.

Select functions may need to store state during the event enable phase that can
accessed by that select function’s event handlers. The function containing the
top-level select statement must allocate space for this state. A pointer to the
start of this memory is passed as an implicit argument to the first select function
called in the event enable phase. The alignment of this pointer is target dependent
(see §2.16 and §2.17). This implicit argument is the first parameter of that function
with the subsequent parameters being the same as the select function itself. The
select function will store state to the start of the area of pointed to by this implicit
argument and return the next aligned word of space after saved state as an implicit
return value. If multiple select functions are called, the return value of the previous
select function is passed as as the implicit argument to the next select function.

To determine the amount of space required to store saved state each select function
must define an absolute symbol whose value is the number of words of state saved
by that select function and all its callees. The name of the symbol is the name of
the function with the suffix .selectstatesavewords.

2.4 The null constant

The null constant is represented by the 32-bit value 0.

2.5 Global arrays

Whenever the definition of a global array a is exported from a compilation unit,
a.globound must be declared as a global absolute symbol and its value set to the
number of elements of the first dimension of the array.

2.6 Register assignments

The register assignments are described in Figure 3.

Registers Type Usage

r0-r3 Caller save Argument and return values

r4-r10 Callee save Scratch

r11 Caller save Scratch

cp Callee save Constant pointer

dp Callee save Data pointer

sp Callee save Stack pointer

lr Callee save Link register

Figure 3:

Register
assignments

XM000140A

Tools developer’s guide 11/37

· The cp register points to a constant pool (see §2.10).

· The dp register points to static data (see §2.11).

· The sp register holds the base address of the stack of the current function
(see §2.7).

· The lr register holds the address to return to when a function completes
(see §2.8).

2.7 Stack frame

Figure 4 illustrates the organization of two adjacent stack frames. The outgoing
arguments and the incoming returns are written in order so that earlier arguments
have smaller sp offsets.

outgoing returns

(callee writes)

incoming arguments

(caller writes)

branch link

locals and

temporaries

incoming returns

(callee writes)

outgoing arguments

(caller writes)

branch-link next

(required only for non-leaves)

Figure 4:

Stack Frame
Layout

2.8 Function entry and exit

Before entering a function, the caller must guarantee that sp[0] does not contain
data that is required after the call. It copies into lr the address of the instruction
to execute after the function returns.

On exiting a function, the callee copies the on-entry value of the lr to the pc
register.

2.8.1 Example

A function f is called with the instruction bl f. This instruction saves the value of
pc+1 to lr.

XM000140A

Tools developer’s guide 12/37

The entry sequence for f is:

entsp n

where n is the size in words of the stack frame. This instruction saves lr to sp[0]
and extends the stack frame by n words.

The exit sequence for f is:

retsp n

This instruction adjusts the stack pointer to its value prior to entry and loads sp[0]
to pc.

2.9 Channel communication

An object is communicated over a channel end as a stream of bytes. The number
of bytes sent is equal to the size of the object. Bytes are sent in reverse order, so
that the first byte sent is the byte that would have the highest address if the object
was stored in memory.

For input and output statements on channel ends qualified streaming, the object
is communicated over the channel end directly. No additional control tokens are
communicated.

The communication sequence for an input statement outside a transaction is
defined to be the same as the communication sequence for a slave transaction
consisting of just the input statement. The communication sequence for an output
statement outside a transaction is defined to be the same as the communication
sequence for a master transaction consisting of just the output statement.

2.9.1 Transactions

Transactions may only be used with unqualified channel ends. The communication
sequence for each input and output enclosed in transactions depends on whether
the previous operation on the channel in the transaction was a input or output. In
the description below this state is represented with the variable last_out.

At the start of a master transaction the following actions are performed on the
transactor:

1. Output an end control token

outct res[c], CT_END

2. Set last_out to 0

At the start of a slave transaction the following actions are performed on the
transactor:

1. Check for an end control token

checkct res[c], CT_END

XM000140A

Tools developer’s guide 13/37

2. Set last_out to 1

For each input enclosed in a transaction last_out is set to 0. If this causes the value
of last_out to change from 1 to 0 then an end control token is output. Finally, the
object is output as a stream of bytes.

For each output enclosed in a transaction, last_out is set to 1. If this causes the
value of last_out to change from 0 to 1, then an end control token is input. Finally,
the object is input as a stream of bytes.

At the end of a transaction, if last_out is set to 1, the following actions are
performed:

1. Output an end control token

outct res[c], CT_END

2. Check for an end control token

checkct res[c], CT_END

At the end of a transaction, if last_out is set to 0, the following actions are
performed:

1. Check for an end control token

checkct res[c], CT_END

2. Output an end control token

outct res[c], CT_END

2.10 Constant pool

There is a single global constant pool, pointed to by the cp register. The linker
adds the global symbol _cp and places all sections with the SHF_CP flag after this
symbol. The cp register is initialized during the bootstrap process to the _cp
symbol.

Named global read-only objects are placed in the .cp.rodata section and accessed
via the cp register.

The compiler may place unnamed constants in mergeable sections. The .cp-
.const4 section holds 4-byte mergeable constants. The .cp.const8 section holds
8-byte mergeable constants. The .cp.string section holds unnamed string con-
stants.

2.11 Data region

There is a single global data pool, pointed to by the dp register. The linker adds
the global symbol _dp and places all sections with the SHF_DP flag after this symbol.
The dp register is initialized during the bootstrap process to the _dp symbol.

XM000140A

Tools developer’s guide 14/37

Writable named objects are placed in the .dp.data section or, if zero initialized,
the .dp.bss section and are accessed via the dp register.

All global objects are word aligned. Unsigned scalar types smaller than 32 bits are
stored as zero-extended 32-bit values.

2.12 Clock blocks

Before the program entry point is called, a clock block is configured to be clocked
off the reference clock with no divide and is put into a running state. The global
symbol _default_clkblk is set to the resource identifier of this block block. This
clock block must not be reconfigured.

2.13 Processor-specific relocation types

The processor-specific relocation types are listed in Figure 5. The relocation table
is given in Figure 6. Two fields are taken from the DWARF 3 standard.5

An error must be issued if the computed value does not fit in the allocated bits. For
calculations using word or short offsets, an error must be issued on misalignment.
Relocation information for a section is normally placed in a section called .rel
followed by the name of the section to which the relocations apply (or .rela if
addends are used). For example, relocation information for .text is placed in
.text.rel or .text.rela.

5DWARF Debugging Information Format Version 3. http://dwarfstd.org/doc/Dwarf3.pdf.

XM000140A

http://dwarfstd.org/doc/Dwarf3.pdf

Tools developer’s guide 15/37

Field Meaning

data32 Specifies a 32-bit field occupying 4 bytes.

data16 Specifies a 16-bit field occupying 2 bytes.

data8 Specifies a 8-bit field occupying 1 byte.

uleb32 Specifies a 32-bit field encoded in 5 bytes. The value is first encoded as an
unsigned LEB128 number, as described in the DWARF 3 standard. Zero bytes
are appended to pad the size to 5 bytes. The most significant bit of bytes 0, 1,
2 and 3 is set to 1.

sleb32 Specifies a 32-bit field encoded in 5 bytes. The value is first encoded as a
signed LEB128 number, as described in the DWARF 3 standard. Zero bytes are
appended to pad the size to 5 bytes. The most significant bit of bytes 0, 1, 2
and 3 is set to 1.

u6 Specifies an unsigned 6-bit field contained within 2 bytes. The value is placed
in bits 0-5. (For example, ldwdp.)

lu6 Specifies an unsigned 16-bit field contained within 4 bytes. Least significant 6
bits are placed in bits 16-21. Most significant 10 bits are placed in bits 0-9.
(For example, prefixed ldwdp.)

u10 Specifies an unsigned 10-bit field contained within 2 bytes. Value is placed in
bits 0-9. (For example, ldwcpl.)

lu10 Specifies an unsigned 20-bit field contained within 4 bytes. Least significant
10 bits are placed in bits 16-25. Most significant 10 bits are placed in bits 0-9.
(For example, prefixed ldwcpl.)

u6s Specifies a signed value encoded in 7 bits within 2 bytes. The magnitude is
encoded as with u6. Bit 10 is set to 0 for positive and 1 for negative numbers.
(For example, bu.)

u6s Specifies a signed value encoded in 17 bits within 4 bytes. The magnitude is
encoded as with lu6. Bit 26 is set to 0 for positive and 1 for negative numbers.
(For example, prefixed bu.)

u10s Specifies a signed value encoded in 11 bits within 2 bytes. The magnitude is
encoded as with u10. Bit 10 is set to 0 for positive and 1 for negative numbers.
(For example, ldap.)

lu10s Specifies a signed value encoded in 21 bits within 4 bytes. The magnitude is
encoded as with lu10. Bit 26 is set to 0 for positive and 1 for negative
numbers. (For example, prefixed ldap.)

Figure 5:

Relocation
types

XM000140A

Tools developer’s guide 16/37

Name Value Field Calculation

R_XCORE1_NONE 0 none none

R_XCORE1_DATA32 1 data32 S + A

R_XCORE1_DP_REL6 2 u6 (S + A - dp) / 4

R_XCORE1_DP_REL16 3 lu6 (S + A - dp) / 4

R_XCORE1_CP_REL6 4 u6 (S + A - cp) / 4

R_XCORE1_CP_REL16 5 lu6 (S + A - cp) / 4

R_XCORE1_CP_REL10 6 u10 (S + A - cp) / 4

R_XCORE1_CP_REL20 7 lu10 (S + A - cp) / 4

R_XCORE1_REL6 8 u6s (S + A - P) / 2

R_XCORE1_REL16 9 lu6s (S + A - P) / 2

R_XCORE1_REL10 10 u10s (S + A - P) / 2

R_XCORE1_REL20 11 lu10s (S + A - P) / 2

R_XCORE1_ABS16 12 lu6 S + A

R_XCORE1_ULEB32 13 uleb32 S + A

R_XCORE1_DATA8 14 data8 S + A

R_XCORE1_DATA16 15 data16 S + A

R_XCORE1_ABS6 16 u6 S + A

R_XCORE1_SLEB32 17 sleb32 S + A

R_XCORE1_REL6_4 16 u6s (S + A - P) / 4

R_XCORE1_REL16_4 17 lu6s (S + A - P) / 4

R_XCORE1_REL10_4 18 u10s (S + A - P) / 4

R_XCORE1_REL20_4 19 lu10s (S + A - P) / 4

Key:

A The addend used to compute the value of the field.

P The place (section offset or address) of the storage unit being relocated
(computed using r_offset).

S The value of the symbol whose index resides in the relocation entry.

dp The value of the symbol _dp.

cp The value of the symbol _cp.

Figure 6:

Relocation
table

XM000140A

Tools developer’s guide 17/37

2.14 Sections

The ABI-defined sections for a linkable object are given in Figure 7.

Name Type Attributes Size Description

SHF_ALLOC + (bytes)

.text @progbits SHF_EXECINSTR none Program code

.dp.data @progbits SHF_WRITE + none Initialized data

SHF_DP

.dp.rodata @progbits SHF_WRITE + none Read-only data

SHF_DP

.cp.rodata @progbits SHF_CP none Read-only data

.dp.bss @nobits SHF_WRITE + none Zero-initialized data

SHF_DP

.cp.string @progbits SHF_MERGE + 1 Mergeable strings

SHF_STRINGS +
SHF_CP

.cp.const4 @progbits SHF_MERGE + 4 Mergeable constants

SHF_CP

.cp.const8 @progbits SHF_MERGE + 8 Mergeable constants

SHF_CP

Figure 7:

ABI sections

2.15 Processor-specific extensions

Two additional sections are defined: an expression section and a type section.
These sections allow information about a compiled program to be communicated
to the linker.

2.15.1 Expression section

The value of a symbol that depends upon symbols in other objects can be expressed
as an expression that is resolved during linkage. These expressions can contain
constants, strings (from the string table) and symbol values.

The expression section has type SHT_EXPR with the name .expr and contains an
array of structures of the format:

XM000140A

Tools developer’s guide 18/37

typedef struct {
Elf32_Word type;
Elf32_Word result;
Elf32_Word op1;
Elf32_Word op2;
Elf32_Word op3;

} Elf32_Expr;

The result field is a symbol number which denotes where the result is stored.
The type field determines the arithmetic operation and whether each of the thee
operands is a constant value or an index into the symbol table as described in the
table in Figure 8. A single expression section is allowed.

A symbol used as an operand may itself be the result of an expression. Any
cyclic dependencies must be detected and either reported as errors or result in
implementation-defined values being used.

Symbols that are the subject of linker expressions are of ELF type absolute. Until
they are resolved they have the value zero.

2.15.2 Type information

The type of a variable can be encoded as a string and added as an entry to the
type section. The type section has type SHT_TYPEINFO with name .typeinfo. For
sections of this type, the sh_link field holds the section header index of the symbol
table to which the type information applies. The sh_info field holds the value 0. A
single type section is allowed. It contains an array of structures of the format:

typedef struct {
Elf32_Word ti_symbol;
Elf32_Word ti_type;

} Elf32_TypeInfo;

The ti_symbol member holds an index into the object file’s symbol string table
which holds the ASCII character representation of the symbol name. The ti_type
member holds an index into the object file’s symbol string table, which in turn
holds the character representation of the type string. If there is no type string
associated with a symbol there should be no entry in the table. The ASCII string
encoding for the xC and ANSI C types is given in Figure 9.

Type qualifiers appear alphabetically, followed by a colon and then the type
encoding. If there are no type qualifiers then no colon is emitted before the type.
For example, volatile const int is encoded as cv:si. The qualifier encodings
are given in Figure 11.

The value of enum members must always be encoded, regardless of whether an
explicit value is provided. The enum values are encoded as decimal values; enum
members are ordered alphabetically by their name.

XM000140A

Tools developer’s guide 19/37

Named union members are ordered alphabetically by their name. Unnamed union
bit-field members are placed after named members and ordered firstly according
to their size (low to high), then alphabetically by the type string of the bit-field’s
type.

In ANSI C, when a function parameter is declared with a qualified type, the qualifiers
are discarded when emitting the type string. In xC, the const and volatile
qualifiers are discarded from function parameters which are not a reference type.

ANSI C structures and unions may introduce cycles due to forward declarations
of struct and union types. Wherever cycles exist, the type of the structure or
union that completes the cycle is encoded as an incomplete struct or union. For
example, in the declaration:

struct tag { struct tag *next; } foo;

the type of foo is encoded as:

s(tag){ p(s(tag){}) }

2.15.3 Other Symbols

For each function f defined and added to the symbol table, the following symbols
may also be defined. The definition of one of these symbols must be accompanied
by an SHT_EXPR entry as described in Figure 12.

XM000140A

Tools developer’s guide 20/37

Bits Value Meaning

0-1 0 Operand 1 is a constant.

1 Operand 1 is a symbol index.

2 Operand 1 is a string index.

2-3 0 Operand 2 is a constant.

1 Operand 2 is a symbol index.

2 Operand 2 is a string index.

4-5 0 Operand 3 is a constant.

1 Operand 3 is a symbol index.

2 Operand 3 is a string index.

6-14 0 Operator is NULL (unused).

1 Specifies that result is op1 + op2.

2 Specifies that result is max(op1 , op2) .

3 Specifies that result is op1 * op2.

4 Specifies that result is op1 - op2.

5 Specifies that if op2 evaluates to 0 the string op1 must be printed as a
warning (if op3 is 0 as an error).

6 Specifies that result is the value of op1 aligned up to size op2.

7 Specifies that result is op1 < op2 (boolean).

8 Specifies that result is op1 > op2 (boolean).

9 Specifies that result is op1 <= op2 (boolean).

10 Specifies that result is op1 >= op2 (boolean).

12 Specifies that function result calls function op1.

13 Specifies that the global op1 is passed by reference to function result;
op2 is a string which identifies a source line.

15 Specifies that function result reads global variable op1; op2 is a string
which identifies a source line.

16 Specifies that function result writes global variable op1; op2 is a string
which identifies a source line.

17 Specifies that op1 holds the stack usage of function result.

19 Specifies that op1 contains the thread usage of function result.

20 Specifies that op1 contains the timer usage of function result.

21 Specifies that op1 contains the channel end usage of result.

23 op1 is a boolean value which is non-zero if function result and its
callees have no side effects.

24 op1 is a boolean value which is non-zero if function result (but not
necessarily its callees) have no side effects.

25 Functions result and op1 may be called in parallel; op2 is a string which
identifies a source line.

27 Specifies that the user-visible name of symbol result is string op2.

Figure 8:

Expression
section

entries and
their

meanings

XM000140A

Tools developer’s guide 21/37

Type xC C Encoding

signed char Y Y sc

unsigned char Y Y uc

signed short Y Y ss

unsigned short Y Y us

signed int Y Y si

unsigned int Y Y ui

signed long Y Y sl

unsigned long Y Y ul

signed long long N Y sll

unsigned long long N Y ull

float N Y ft

double N Y d

_Bool N Y b

long double N Y ld

t:n N Y b(n:E (t))a

chanend Y N chd

port Y N p

port:n Y N p:n

timer Y N swt

hwtimer_t Y N t

clock Y N ck

tileref Y N cr

void N Y 0

struct tag { t1;t2} Y Y s(tag){E (t1),E (t2)}

struct tag Y Y s(tag){}b

union tag { t1;t2} Y Y u(tag){E (t1),E (t2)}c

union tag Y Y u(tag){}d

enum tag { m1,m2} Y Y e(tag){E (m1),E (m2)}

t name Y Y m(name){E (t)}e

client interface tag {
m1;m2}

Y N ic(tag)[s:]{E (m1),E (m2)}

server interface tag
{ m1;m2}

Y N is(tag)[s:]{E (m1),E (m2)}

t name Y Y m(name){E (t)}e

t name = val Y Y m(name){val}f

a bit-field member
b incomplete struct
c members subject to ordering rules
d incomplete union
e struct or union member
f enum member

Figure 9:

Type section

XM000140A

Tools developer’s guide 22/37

Type xC C Encoding

void f(void) Y Y f{0}(0)
transaction f(void) Y N ft{0}(0)
select f(void) Y N fs{0}(0)
void f() Y Y f{0}()g

void f(t) Y Y f{0}(E (t))
void f(t,...) N Y f{0}(E (t),va)
void f(t1,t2) Y Y f{0}(E (t1),E (t2))
t2 f(t1) Y Y f{E (t2)}(E (t1))
{ t2, t3} f(t1) Y Y f{E (t2),E (t3)}(E (t1))
*t N Y p(E (t))h

*t Y N q(E (t))i

&t N Y &(E (t))
t[n] Y Y a(n:E (t))
t[n][m] Y Y a(n:a(m:E (t)))
t[] Y N a(:E (t))j

t[] Y Y a(: E (t))k

t[n] Y N a(!offset (n):E (t))l

g incomplete in C
h C pointer
i xC pointer
j an array parameter with no size specified
k a global extern array with no size specified
l an array parameter with size specified as another parameter. The offset is the number
of the size parameter minus the number of the array parameter.

Figure 10:

Type section
(continued)

XM000140A

Tools developer’s guide 23/37

Qualifier xC C Encoding

alias Y N a
buffered Y N b
const Y Y c
in Y N i
[[clears_notification]] Y N l
streaming Y N m
? Y N n
out Y N o
restrict N Y r
slave Y N s
[[notification]] Y N t
unsafe Y N u
volatile N Y v
void Y N w
movable Y N x
[[combinable]] Y N k
[[distributable]] Y N d
static Y N e
inline Y Y (ignored)

register Y Y (ignored)

Figure 11:

Qualifier
encodings

Symbol for function f Type value (bits 6-14)

f. nstackwords 17

f. maxthreads 19

f. maxtimers 20

f. maxchanends 21

f. actnoside 23

f. locnoside 24

f. actnochandec 30

f. locnochandec 31

Figure 12:

Special
symbols that

may be
defined for a
function and

their
SHT_EXPR

entries

XM000140A

Tools developer’s guide 24/37

2.16 XS1-specific requirements

The following sections detail the specific ABI requirements for XS1 targets.

2.16.1 Types

long long and double are 32-bit aligned.

2.16.2 Functions

All functions are 16-bit aligned.

The stack pointer must be 32-bit aligned on entry to a function.

For select functions, the caller must ensure that the initial implicit state pointer
argument that is passed to the enable function is 32-bit aligned. The enable
function must ensure that the returned state pointer is 32-bit aligned.

2.16.3 Constant pool/data region

All global objects are 32-bit aligned.

2.17 XS2-specific requirements

The following sections detail the specific ABI requirements for XS2 targets.

2.17.1 Types

long long and double are 64-bit aligned.

2.17.2 Functions

All functions are 32-bit aligned and must not assume anything about the current
issue mode on function entry.

The stack pointer must be 64-bit aligned on entry to a function.

An aggregate containing a single member is passed as if the function took an
argument of that member type. This rule applies recursively.

An aggregate containing a single member is returned as if the function returned
an argument of that member type. This rule applies recursively.

For select functions, the caller must ensure that the initial implicit state pointer
argument that is passed to the enable function is 64-bit aligned. The enable
function must ensure that the returned state pointer is 64-bit aligned.

XM000140A

Tools developer’s guide 25/37

2.17.3 Constant pool/data region

All global objects are aligned by taking the maximum alignment determined by the
following rules:

· global objects are aligned according to their type;

· arrays are 64-bit aligned;

· aggregate types with a size of at least 8 bytes are 64-bit aligned;

· all global objects are 32-bit aligned.

2.17.4 Sections

Global objects with 32-bit alignment must be placed in the following sections,
separate to global objects with 64-bit alignment:

· .dp.data.4

· .dp.rodata.4

· .cp.rodata.4

· .dp.bss.4

The existing section names will continue to be used for 64-bit-aligned data.

2.17.5 Identifying dual issue code

To help identify dual-issue code, symbols of the following form must be added to
the symbol table:

Name Description

$s.<number> Start of a sequence of single issue instructions

$d.<number> Start of a sequence of dual issue instructions

These symbols can be used by disassemblers to identify whether a sequences of
bytes in executable sections should be interpreted as a sequence of dual issue
instructions.

XM000140A

3 XMOS executable (XE) file format

IN THIS CHAPTER

· Binary format

· Booting an XE File

The XMOS executable (XE) binary file format holds executable programs compiled
to run on XMOS devices. The format supports distinct programs for each xCORE
tile in a multi-tile or multi-chip design, and allows multiple loads and runs on each
tile.

In addition to the program itself, an XE file contains a description of the system
it is intended to run on. This description takes the form of either an XML system
configuration description or a 64-bit per-node system identifier.

3.1 Binary format

The following sections explain the common elements of the binary format. All data
is encoded as little endian.

3.1.1 XE header

An XE file must start with an XE header. It has the following format:

Byte offset Length (bytes) Description

0x0 4 The string XMOS encoded in ASCII.

0x4 1 Major version number (2).

0x5 1 Minor version number (0).

0x6 2 Reserved. Must be set to zero.

Figure 13:

XE header

3.1.2 Sectors

The XE header is followed by a list of sectors. The end of the sector list must
be marked using a sector with a sector type of 0x5555. Each sector consists of
a sector header, optionally followed by a variable-length sector contents block
containing sector data. Padding is added after the sector data to make the sector
contents block a whole number of 32-bit words.

The sector CRC is calculated on the byte stream from the start of the sector header
to the byte before the sector CRC. The polynomial used is 0x04C11DB7 (IEEE
802.3); the CRC register is initialized with 0xFFFFFFFF and residue is inverted to
produce the CRC.

XM000140A

Tools developer’s guide 27/37

Byte offset Length (bytes) Description

0x0 2 Sector type.

0x2 2 Reserved. Must be set to zero.

0x4 8 Size in bytes of the sector contents block. Set to zero if
this sector has no sector contents block.

Figure 14:

Sector header

Byte offset Length (bytes) Description

0x0 1 Size in bytes of the padding after the sector data.

0x1 3 Reserved. Must be set to zero.

0x4 n Sector data.

0x4+n p Padding bytes to align to the next 32-bit word.

0x4+n+p 4 Sector CRC.

Figure 15:

Sector
contents

block

The following sector types are defined:

Value Name Description

0x1 Binary Load binary image.

0x2 ELF Load ELF image.

0x3 SysConfig System description XML.

0x4 NodeDescriptor Node description.

0x5 Goto Start execution.

0x6 Call Start execution and wait for return.

0x8 XN XN description.

0x5555 Last sector Marks the end of the file.

0xFFFF Skip Skip this sector.

Figure 16:

Sector types

The meaning of the sector data depends on the sector type. The following sections
provide further details of the format of the sector data for each sector type.

3.1.2.1 SysConfig sectors

The SysConfig sector contains a full XML description of the system, including num-
ber of nodes, xCORE tiles and link/interconnect configuration. This information
is provided by XMOS to describe its chip products. The format of the SysConfig
sector is currently undocumented.

XM000140A

Tools developer’s guide 28/37

3.1.2.2 Node descriptor sectors

The NodeDescriptor sector describes an individual node, allowing the toolchain
to validate an executable file matches the target device. There may be 0 or more
NodeDescriptor sectors.

Data byte offset Length (bytes) Description

0x0 2 Index of the node in the JTAG scan chain.

0x2 2 Reserved.

0x4 4 Device JTAG ID.

0x8 4 Device JTAG user ID.

Figure 17:

NodeDescriptor
sector

3.1.2.3 XN sector

The XN sector contains a XN description of the system, as described in the xTIME-
composer User Guide.6

3.1.2.4 Binary/ELF sectors

Binary or ELF sectors instruct the loader to load a program image on the specified
xCORE tile. Binary/ELF sectors are formatted as shown in the following table:

Data byte offset Length (bytes) Description

0x0 2 Index of the node in the JTAG scan chain.

0x2 2 xCORE tile number.

0x4 8 Load address of the binary image data. For ELF
sectors this field should be set to 0.

0xC n Image data.

Figure 18:

Binary/ELF
sector

When a binary sector is loaded the data field is copied into memory starting at the
specified load address. When a ELF sector is loaded the loadable segments of ELF
image contained in the data field are loaded to the addresses specified in the ELF
image.

3.1.2.5 Goto/call sectors

Goto and call sectors instruct the loader to execute code on the specified xCORE
tile. If the last image loaded onto the tile was a ELF image execution starts at
address of the _start symbol, otherwise execution starts at address specified as a
field in the sector.

6The XMOS xTIMEcomposer user guide. http://www.xmos.com/published/xtools_en.

XM000140A

http://www.xmos.com/published/xtools_en

Tools developer’s guide 29/37

When processing a call sector the loader should wait for the code to indicate
successful termination via a done or exit system call before processing the next
sector.

Data byte offset Length (bytes) Description

0x0 2 Index of the node in the JTAG scan chain.

0x2 2 xCORE tile number.

0x4 8 Specifies the address to jump to if the last image
loaded onto the tile was a binary image. This
field should be set to 0 if the last image loaded
was an ELF image.

Figure 19:

Goto/Call
sector

3.1.2.6 Last sector

The last sector type is used to indicate the end of the sector list. A sector of this
type should have no sector contents block.

3.1.2.7 Skip sector

A loader must ignore any skip sectors that appear in the sector list. Changing the
type of an existing sector to the skip sector type allows removal of sectors without
effecting the layout of the XE file.

3.2 Booting an XE File

To boot an XE file the sectors within the file must be processed in sequential order.
This allows a loader to load and execute sectors to initialize the system in an order
defined by the toolchain, using as many boot stages as required. If an image is
loaded onto an xCORE tile there must be exactly one Goto sector. This sector must
appear after all Call, Binary and ELF sectors for that tile.

A loader may choose to delay processing of Call sectors until a set of Call sectors
have been accumulated for all xCORE tiles on the target device. This allows the
loader to reduce boot time by executing as much code as possible in parallel.

Call sectors should only be used to run code that configures interconnect registers.
A loader can choose to ignore call sectors so long as it configures the interconnect
registers for the target described in the XN sector.

The example in Figure 20 shows a typical layout for an XE file containing a program
compiled to run on a XS1-G4 device.

XM000140A

Tools developer’s guide 30/37

Sector type Node Tile Description

SysConfig XML System description, ignored by the loader.

XN XN description, ignored by the loader.

ELF 0 3 Load ELF image onto node 0 tile 3.

Call 0 3 Execute program on node 0 tile 3 and wait for successful
termination.

ELF 0 2 Load ELF image onto node 0 tile 2.

Call 0 2 Execute program on node 0 tile 2 and wait for successful
termination.

ELF 0 1 Load ELF image onto node 0 tile 1.

Call 0 1 Execute program on node 0 tile 1 and wait for successful
termination.

ELF 0 0 Load ELF image onto node 0 tile 0.

Call 0 0 Execute program on node 0 tile 0 and wait for successful
termination.

ELF 0 3 Load ELF image onto node 0 tile 3.

Goto 0 3 Execute program on node 0 tile 3.

ELF 0 2 Load ELF image onto node 0 tile 2.

Goto 0 2 Execute program on node 0 tile 2.

ELF 0 1 Load ELF image onto node 0 tile 1.

Goto 0 1 Execute program on node 0 tile 1.

ELF 0 0 Load ELF image onto node 0 tile 0.

Goto 0 0 Execute program on node 0 tile 0.

Last sector Last sector marker.

Figure 20:

Example XE
file

XM000140A

4 XMOS system call interface

IN THIS CHAPTER

· System calls

· System call interface

· Exceptions

The xTIMEcomposer tools provide a library containing a set of Unix-like system calls intended to
be mapped to operations on an attached host machine. These system calls ease debugging of
applications by providing support for file I/O and reporting of program termination.

4.1 System calls

The following system calls are provided:

Function _exit

Description Indicates the termination of the program with the given exit status. Doesn’t
return.

Type void _exit(int status)

Function _done

Description Indicates the successful termination of threads on the current core. Doesn’t
return. The program is considered to have successfully terminated when _done
is called on every core on which code is running.

Type void _done(void)

XM000140A

Tools developer’s guide 32/37

Function _open

Description Used to convert a pathname into a file descriptor. The flags argument is the
the bitwise-or of a subset of the possible open flags. The open flags are given
below. One of O_RDONLY, O_WRONLY or O_RDWR must be specified.

If O_CREAT is specified the mode argument determines of permissions of the file
that is created. The mode argument is the bitwise-or of a subset of the possible
mode flags. The mode flags are given below.

O_RDONLY 0x0001 Read only.

O_WRONLY 0x0002 Write only.

O_RDWR 0x0004 Read/write enable.

O_CREAT 0x0100 Create and open file.

O_TRUNC 0x0200 Truncate file to zero bytes.

O_EXCL 0x0400 Exclusive open.

O_APPEND 0x0800 Open in append mode. Data is written to the end of
the file.

O_BINARY 0x8000 Open in binary mode.

Name Value Description

S_IREAD 0400 Read permission.

S_IWRITE 0200 Write permission.

S_IEXEC 0100 Execute permission.

_open returns the new file descriptor, or -1 on error (in which case errno is set
appropriately).

Type void _open(const char *pathname, int flags, mode_t mode)

Function _close

Description Closes the file descriptor fd. Returns 0 on success, or -1 on error (in which case
errno is set appropriately).

Type void _close(int fd)

XM000140A

Tools developer’s guide 33/37

Function _read

Description Attempts to read count bytes from the file descriptor fd to the buffer starting
at buf. Returns the number of bytes read, or -1 on error (in which case errno is
set appropriately).

Type void _read(int fd, void *buf, size_t count)

Function _write

Description Attempts to write count bytes from the buffer starting at buf to the file descrip-
tor fd. Returns the number of bytes written, or -1 on error (in which case errno
is set appropriately).

Type void _write(int fd, void *buf, size_t count)

Function _lseek

Description Repositions the offset of the file descriptor fildes based on the value of offset
and whence. The allowable values of whence are given below.

Name Value Description

SEEK_CUR 1 The offset is set to its current position plus offset
bytes.

SEEK_END 2 The offset is set to the end of the file plus offset
bytes.

SEEK_SET 0 The offset is set to offset bytes.

_lseek returns the new offset in bytes from the beginning of the file, or -1 on
error (in which case errno is set appropriately).

Type void _lseek(int fildes, off_t offset, int whence)

Function _time

Description Returns the time since 00:00:00 UTC, January 1, 1970 measured in seconds, or
-1 on error. If t is non-NULL the return value is also stored in *t.

Type time_t _time(time_t *t)

XM000140A

Tools developer’s guide 34/37

Function _system

Description Behaves as the system function defined in the C standard.7

Type void _system(const char *string)

Function _remove

Description Behaves as the remove function defined in the C standard. 6

Type void _remove(const char *pathname)

Function _rename

Description Behaves as the rename function defined in the C standard. 6

Type void _rename(const char *oldpath, const char *newpath)

Function _is_simulation

Description Returns 1 if the program is being executed in a simulator and 0 otherwise.

Type int _is_simulation(void)

7ISO/IEC 9899:1999: Programming Languages - C. Wiley, West Sussex, England, December 1999.

XM000140A

Tools developer’s guide 35/37

Function _plugins

Description Used to control simulator plugins. The type argument determines the action
taken. Values less than 65536 are reserved. Values greater than or equal to
65536 can be used to implement user defined communication with custom
simulator plugins. The standard values are given below.

Name Value Description

NOTIFY_PLUGINS_START_TRACE 0 Instructs plugins to start tracing.
Takes no arguments.

NOTIFY_PLUGINS_STOP_TRACE 1 Instructs plugins to stop tracing.
Takes no arguments.

Type void _plugins(int type, unsigned arg1, unsigned arg2)

4.2 System call interface

System calls are performed by calling the _DoSyscall function. This enables all system calls to be
caught using a single instruction breakpoint. r0 identifies the system call that should be invoked.
The permitted values are given in Figure 21.

Figure 21: System call types

Name Value

OSCALL_EXIT 0

OSCALL_OPEN 3

OSCALL_CLOSE 4

OSCALL_READ 5

OSCALL_WRITE 6

OSCALL_DONE 7

OSCALL_LSEEK 8

OSCALL_RENAME 9

OSCALL_TIME 10

OSCALL_REMOVE 11

OSCALL_SYSTEM 12

OSCALL_IS_SIMULATION 99

OSCALL_PLUGINS 100

System call arguments are passed to _DoSyscall in registers r1, r2 and r3. The return value of
the system call and the value of errno is encoded in the value of r0 after _DoSyscall returns.

If the system call can cause errno to be set and the value of r0 after _DoSyscall returns is in the
range -128 to -1 inclusive errno is set to the negation of r0 and -1 is the return value. If value of

XM000140A

Tools developer’s guide 36/37

r0 is outside this range or if the system call does not set errno then the value of r0 is used as the
return value. The allowable values of errno are given in Figure 22.

Figure 22: errno values

Name Value Description

EPERM 1 Operation not permitted.

ENOENT 2 No such file or directory.

EINTR 4 Interrupted system call.

EIO 5 I/O error.

ENXIO 6 No such device or address.

EBADF 9 Bad file number.

EAGAIN 11 Try again.

ENOMEM 12 Out of memory.

EACCES 13 Permission denied.

EFAULT 14 Bad address.

EBUSY 16 Device or resource busy.

EEXIST 17 File exists.

EXDEV 18 Cross-device link.

ENODEV 19 No such device.

ENOTDIR 20 Not a directory.

EISDIR 21 Is a directory.

EINVAL 22 Invalid argument.

ENFILE 23 File table overflow.

EMFILE 24 Too many open files.

ETXTBSY 26 Text file busy.

EFBIG 27 File too large.

ENOSPC 28 No space left on device.

ESPIPE 29 Illegal seek.

EROFS 30 Read-only file system.

EMLINK 31 Too many links.

EPIPE 32 Broken pipe.

EDOM 33 Math argument out of domain of function.

ERANGE 34 Math result not representable.

ENAMETOOLONG 36 File name too long.

ENOSYS 38 Function not implemented.

ENOTEMPTY 39 Directory not empty.

ELOOP 40 Too many symbolic links encountered.

EOVERFLOW 75 Value too large for defined data type.

EILSEQ 84 Illegal byte sequence.

XM000140A

Tools developer’s guide 37/37

4.3 Exceptions

In the event of an exception the default exception handler branches to the _DoException function.
This enables all exceptions to be caught using a single instruction breakpoint. All registers apart
from the pc have the values they had immediately after the exception was taken.

Copyright © 2015, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

XMOS and the XMOS logo are registered trademarks of Xmos Ltd. in the United Kingdom and other countries,
and may not be used without written permission. All other trademarks are property of their respective owners.
Where those designations appear in this book, and XMOS was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

XM000140A

	Introduction
	xTIMEcomposer development tools
	How to read this guide

	XMOS 32-bit application binary interface
	Execution environment
	Types
	Enumerated types
	Bit fields

	Function calling
	Function returns
	Array-bound parameters
	Transaction functions
	Select functions

	The null constant
	Global arrays
	Register assignments
	Stack frame
	Function entry and exit
	Example

	Channel communication
	Transactions

	Constant pool
	Data region
	Clock blocks
	Processor-specific relocation types
	Sections
	Processor-specific extensions
	Expression section
	Type information
	Other Symbols

	XS1-specific requirements
	Types
	Functions
	Constant pool/data region

	XS2-specific requirements
	Types
	Functions
	Constant pool/data region
	Sections
	Identifying dual issue code

	XMOS executable (XE) file format
	Binary format
	XE header
	Sectors

	Booting an XE File

	XMOS system call interface
	System calls
	System call interface
	Exceptions

