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Take the guesswork out of timing in 
real-time software systems*

To guarantee the correct operation of real-time software running on an embedded processor is a 
significant challenge. Data-dependent control flow, where execution times of many functions are 
dependent on the data inputs, means that instruction sequences are difficult to time accurately. 
This problem is further complicated by the use of interrupts and complex memory hierarchies, 
which can make timing near-impossible to accurately predict. 
To address this problem so far, the test bench has been relied upon to exercise the timing corner 
cases of each function. In complex systems, this often means developing much of the rest of the 
application before suitable stimulus can be created. This has added significant effort and delay to 
certifying software system timing. 
New processor architectures with predictable timing enable new approaches to timing 
certification. This article describes a new technique, static timing analysis, which can be used to 
formally prove that real-time constraints in the source code are always met. In short, a static 
timing tool analyzes object code and determines worst-case timing paths. Paths are analyzed 
interactively or against assertions in the source code to produce a pass or fail result, allowing 
designers to refine timing-critical sections of their code until timing closure is achieved. 
The article shows how this approach can be used to develop a software implementation of a 
100Mbps Ethernet MII interface. 

Introduction 
As processor architectures improve in speed 
and responsiveness, it becomes increasingly 
attractive to perform real-time functions in 
software instead of hardware. An interface 
such as an IIC master that defines timing is 
simple to implement in software. In contrast, an 
IIC slave must respond to events within strict 
time limits and is therefore traditionally 
performed in hardware. Developing real-time 
interfaces in software represents a real-time 
programming challenge. 
Verifying software functionality is a well-
practiced task using software test benches. 
Closing timing may require a significant amount 
of additional effort. The standard approaches to 
closing timing are usually limited to testing in-
circuit whilst observing pin activity, simulating 
the software using a cycle-accurate simulator 
or counting the instructions for the paths of 
interest to determine the execution time. All of 
these approaches share a common 
requirement: to provide suitable stimulus to 
fully exercise the software under test ensuring 
that corner cases are adequately covered. This 
increases the verification effort due to 
extending test benches to include timing. In 
many cases, obtaining suitable stimulus may 
not be possible until much later in the project 
when the rest of the system is available to 
generate it. Static timing analysis removes this 
dependency and allows timing closure of each 
function individually. 

Predictable processor architecture 
Accurate instruction timing predictions are a 
fundamental requirement for a static timing 
analysis tool. There are many reasons why a 
sequence of instructions may not always take the 
same time to execute. 
Interrupts by nature alter the execution flow 
dramatically by forcing a change of the CPU 
context for an amount of time. Further, all RTOSs 
have critical sections of code where interrupts are 
disabled. This means only one task can truly be 
real-time in a single threaded system and this is 
likely to be the scheduler in systems utilizing an 
RTOS. 
Architectures that include memory hierarchy and 
cache memory in particular are known to exhibit 
less predictable execution times. The previous 
contents of the cache very strongly influence 
timing unless cache lines can be locked. 
Resource conflict also can also increase 
execution time. Being denied a hardware 
resource will naturally block execution and 
adversely affect timing. 
By avoiding these architectural issues, and 
employing simple round-robin scheduling, event 
driven processors provide highly predictable 
maximum execution timing. Further, the ability to 
pre-load output ports with a valid time allows 
execution to continue whilst the port 
autonomously handles the timed output. 
Only data dependent execution flow may impede 
accurate timing prediction. A static timing tool can 
determine all possible paths through the software 
allowing for the variability due to data 
dependencies, providing guaranteed timing. *Updated version of article Taking the guesswork out of timing in real-time 

systems by Peter Hedinger & Edward Clarke, Embedded.com 06/04/2009. 
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Case Study Introduction 
The Ethernet MII interface is an example of where it is advantageous to replace hardware with a 
software implementation. Using software allows early adoption of new hardware standards and 
implementation of custom protocols. The interface between the MAC and PHY layers is shown 
below. 
 

 
The source code to implement this interface is shown below. It is written in XC, which has support 
for direct control of physical pins through port inputs (:>) and outputs (<:). In addition, the 
select statement provides a way to respond to multiple events in a single thread concurrently 
and effectively provides a hardware switch statement. In this example, the pins are mapped to 
the ports port_rxd and port_rx_dv, and the data port port_rxd is configured to convert the 
stream of data nibbles from the PHY into a series of words. 
Before the receiver starts, it ensures that the signal RX_DV is low. It then waits for the start of a 
packet, identified by the signal RX_DV going high and the Start Frame Delimited (SFD) being 
received. The inner loop waits for the availability of the next data word or the signal RX_DV going 
low. When RX_DV goes low, the program inputs any remaining data nibbles and checks for errors 
before starting to receive the next packet (not shown). 
 

buffered in port:32 port_rxd = XS1_PORT_4A; 
in port port_rx_dv = XS1_PORT_1I; 
void mii_rx_pins() { 
 port_rx_dv when pinseq(0) :> int lo; 
 do { 
  int eop = 0; 
  ... 
 
  #pragma xta label "wait_for_sfd" 
  port_rx_dv when pinseq(1) :> int hi; 
  port_rxd when pinseq(0xD) :> int sfd; 
  ... 
  do { 
   select { 
    #pragma xta label "word_receive" 
    case port_rxd :> word: 
     ... 
     break; 
 
    #pragma xta label "rx_dv_low" 
    case port_rx_dv when pinseq(0) :> int lo: 
     eop = 1; 
     ... 
     break; 
   } 
  } while (!eop); 
 } while (1); 
} 
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This program must run fast enough to meet the Ethernet MII timing specification. For 100Mbs 
Ethernet, a word of data is received every 320ns (T1), which means the innermost loop must be 
executed within this time. The inter-frame gap is a minimum of 96 bit times, and the preamble is 
56 bit times. The time in which the inter-frame code must then complete (T2) is 1520ns. 
The challenge is to guarantee that when the source code is compiled and run on a target device, 
it meets both of these timing constraints. There is only one valid path through the function for 
receiving data to consider, but the inter-frame code has a number of paths that corresponding to 
inputting end-packets with different sizes and handling error cases. Manually ensuring that all of 
these paths execute within the allowed time is time-consuming and prone to error, especially 
when the process must be repeated every time the code is modified. 

Case Study Worked Through 
Static timing analysis automates the task of verifying that a program meets its timing constraints. 
Given an architecture with predictable timing on which to run the program, it is possible for a tool 
to ensure that worst-case execution time is fast enough to meet the constraints. The tool 
operates on binary executable files to ensure the accuracy of the timing analysis. In addition it 
makes the tool language-independent, supporting code generated from any compiled source, be 
it assembly, C, C++ or XC. The user can use the GUI to view the code at source level. 
The user starts by specifying a route between two endpoints in the code that needs to be 
executed within a specific time period. The MII code in the previous example specifies three 
endpoint labels as source-level pragmas. The timing tool then applies a combination of compiler, 
simulation and search techniques to ensure that all valid paths through the route are identified 
and accurately timed. Only paths explicitly excluded by the user (referred to as false paths) are 
ignored. 
 

 
 
An interactive GUI or console can be used to visualize the execution paths through the program 
and to identify which of these are false paths. In the MII code, the first route that needs to be 
timed is from the endpoint label word_receive around the loop and back to itself. Two paths 
are found: one around the innermost loop and one that exits this loop and passes through the 
code waiting for the next SFD. The second route that needs to be timed is from the endpoint label 
rx_dv_low to the endpoint label wait_for_sfd. The tool finds all possible paths between 
these two endpoints, including false paths that pass through the word receive loop. Armed with 
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this information, the user can generate a script to run during compilation that checks the code 
meets the MII timing constraints. 
For the MII code, the script looks like: 

 add exclusion wait_for_sfd 
 analyze path word_receive word_receive 
 set required – 320 ns 
 remove exclusion * 
 add exclusion word_receive 
 analyze path rx_dv_low wait_for_sfd 
 set required – 1520 ns 

The assertions check the slack or violation for all possible paths of execution that have not been 
excluded and report the worst-case. In this example, the output is: 
PASS (required 320.0ns, worst-case 180.0ns, slack 140.0ns) 
PASS (required 1520.0ns, worst-case 1200.0ns, slack 320.0ns) 

The tool can be used for more than just pass/fail testing. Structural code views can highlight 
timing hot-spots, and instruction-level views and traces can highlight hardware resource 
contention. This information helps the user focus on optimizing code where it has the greatest 
impact. 
In some cases the user may have to provide additional information before the tool can time the 
code. Data-dependent execution flow, such as an unknown loop count, requires worst-case 
values in order to accurately time the code. These unknown values are highlighted to the user 
and can be specified through either the GUI or console. 

Summary and further work 
This article shows how a practical real-time software implementation can be proved to be timing-
safe through the use of a static timing analysis tool. Whilst this is the main goal of such a tool, the 
technology opens up further possibilities. 
XC includes direct support for timed input/output operations allowing the tool to identify these 
instructions and automatically generate the appropriate timing constraints. For example, the tool 
can check that the code between two timed inputs is executed fast enough. 
The static timing tool identifies all paths through the code, including the worst-case. By analyzing 
the data that causes the worst-case timing, it is possible to reverse engineer the stimulus that 
caused this case. The worst-case test stimulus can then be added to the test bench used at a 
later stage, such as when testing in hardware. This gives the designer confidence that the test 
stimulus accurately covers all corner cases. 
One final possibility is for power optimization. Power consumption is closely matched to 
instruction execution, particularly for event-driven processors that can enter a low power state 
when paused. Analysis and optimization of timing paths between pausing instructions allows the 
energy consumed per loop iteration to be determined and consequently reduced through 
optimization. 
Designing real-time software capable of performing hardware functions is an attractive prospect, 
but until now the flow has been missing a tool to accurately certify timing. The introduction of 
static timing analysis makes it possible to guarantee the correct behavior of real-time software 
running on a processor with predictable instruction timing. 
Static timing analysis also brings the advantage that timing closure of individual functions can be 
achieved well in advance of a full test bench or the rest of the system being available. By 
performing a formal analysis of the code, the static timing analyzer identifies all execution paths 
through the program, ensuring that no corner cases are missed. Adding timing assertions to the 
source code means that the source code not only describes the functionality, but also defines the 
required timing. The correct behavior of the code is validated for the target device at compile-
time. 
Static timing analysis takes the guesswork out of timing real-time software systems. 


