SliceKit GPIO Example Applications

REV A

Publication Date: 2012/10/23
XMOS © 2012, All Rights Reserved.

MQOS

SliceKit GPIO Example Applications 2/24

Table of Contents

1 Overview 3
2 Evaluation Platforms 4
2.1 Recommended Hardware e 4
2.2 Example Applications e e e e e e e e e 4
2.2.1 app_slicekit_simple_demo e 4

2.2.2 app_slicekit_com_demo 4

3 Programming Guide 6
3.1 Simple Demo e e e e e e e e e e 6
3.1.1 StruUCtUre . . o . e e e e e e e e e e e e e e e e e 6

o T L o 6

3.1.3 Usage and Implementation 7

3.2 COMPoOrtDemo o e e e e e e e 9
3.2.1 StrUCtUIe e e e e e e e e e e e e e e e 9

3.2.2 APl e e 9

3.2.3 Usage and Implementation 10

REV A MOS

1 Overview

This document covers two example applications that demonstrate various features
of the XA-SK-GPIO Slice Card including the ADC, LEDs, UART connector and buttons,
the 12C master xSOFTip component, as well as various basic features of the xCORE
processor.

Low level details of how the application is implemented are covered here, with
information about how to modify and experiment with them.

For getting started instructions for both applications, please refer to their respective
Quick Start guides.

REV A MOS

2 Evaluation Platforms

IN THIS CHAPTER
Recommended Hardware

Example Applications

2.1 Recommended Hardware

This application may be evaluated using the Slicekit Modular Development Platform,
available from digikey. Required board SKUs are:

XP-SKC-L2 (Slicekit L2 Core Board) plus XA-SK-GPIO plus XA-SK-XTAG2 (Slicekit
XTAG adaptor) plus XTAG2 (debug adaptor),

2.2 Example Applications

2.2.1 app_slicekit_simple_demo
This application has the following features:

module_i2c_master from the xSOFt ip library is used to access the external ADC,
which is equipped with an external linearised thermistor circuit for temperature
sensing.

simple code to print the recorded temperature to the XDE debug console on the
press of one of the Slice Card buttons

simple code to cycle through the 4 LEDs each time the other button is pressed.

demonstrates use of XC select statements for handling multiple concurrent
inputs

demonstrates basic usage of XCore ports

2.2.2 app_slicekit_com_demo

This application extends the simple demo to provides the following functionality
(all options are dynamically reconfigurable via the APIs for app_slicekit_com_demo
application):

Baud Rate: 150 to 115200 bps

Parity: None, Mark, Space, Odd, Even

Stop Bits: 1,2

Data Length: 1 to 30 bits (Max 30 bits assumes 1 stop bit and no parity)

REV A MOS

SliceKit GPIO Example Applications 5/24

Cycles Through LEDs on button Press

Displays temperature value and button press events on the terminal console of
a host PC via the UART

REV A MOS

3 Programming Guide

IN THIS CHAPTER
Simple Demo
COM Port Demo

3.1 Simple Demo

3.1.1 Structure

All of the files required for operation are located in the app_sk_gpio_simple_demo/src directory.
The files that are need to be included for use of this component in an application are:

File Description
common.h Header file for APl interfaces and Look up tables for thermistor.

main.xc Main file which implements the demo functionality

3.1.2 API

void app_manager (chanend c_uartTX,
chanend c_chanRX,
chanend c_process,
chanend c_end)

Polling uart RX and push button switches and send received commands to pro-
cess_data thread.

This function has the following parameters:

c_uartTX Channel to Uart TX Thread

c_chanRX Channel to Uart RX Thread

c_process Channel to process data Thread

c_end Channel to read data from process thread

int linear_interpolation(int adc_value)
Calculates temperatue based on linear interpolation.

This function has the following parameters:

adc_value int value read from ADC

REV A MOS

SliceKit GPIO Example Applications 7/24

This function returns:

Returns linear interpolated Temperature value

int read_adc_value()
Read ADC value using 12C.

This function returns:

Returns ADC value

3.1.3 Usage and Implementation

The port declaration for the LEDs, Buttons and I12C are declared as below. LEDs and Buttons use 4
bit ports and 12C uses 1 bit port for SCL(I12c Clock) and SDA (12C data).

on stdcore[CORE_NUM]: out port p_led=XS1_PORT_4A;
on stdcore [CORE_NUM]: port p_PORT_BUT_1=XS1_PORT_4C;
on stdcore [CORE_NUM]: struct r_i2c i2cOne = {
XS1_PORT_1F,
XS1_PORT_1B,
1000
bE

The app_manager APl writes the configuration settings information to the ADC as shows below.

i2c_master_write_reg(0x28, 0x00, data, 1, i2cOne); //Write configuration information to
— ADC

The select statement in the app_manager API selects one of the two cases in it, checks if there is
10 event or timer event. This statement monitors both the events and executes which ever event
is occurred first. The select statement in the application is listed below. The statement checks if
there is button press or not. If there is button press then it looks if the button state is same even
after 200msec. If the buton state is same then it recognises as an valid push.

select
{
case button => p_PORT_BUT_1 when pinsneq(button_press_l):> button_press_1: //
— checks if any button is pressed
button=0;
t:>time;
break;

case !button => t when timerafter (time+debounce_time):>void: //waits for 20ms and
— checks if the same button is pressed or not
p_PORT_BUT_1:> button_press_2;
if (button_press_l==button_press_2)
if (button_press_1 == BUTTON_PRESS_VALUE) //Button 1 is pressed
{
printstrln("Button 1 Pressed");
p_led<:(led_value) ;
led_value=led_value<<1;
led_value |=0x01;

REV A MOS

SliceKit GPIO Example Applications 8/24

led_value=led_value & OxOF;

if (led_value == 15)
{
led_value=0x0E;
¥
}
if (button_press_1 == BUTTON_PRESS_VALUE-1) //Button 2 is pressed
{
datal [0]=0;datal1[1]=0;
i2c_master_rx (0x28, datal, 2, i2cOne); //Read ADC value using I2C
— read
printstrln("Reading Temperature value....");
datal [0]=datal [0]&0xO0F;
adc_value=(datal [0]<<86) | (datal[1]>>2);
printstr ("Temperature is :");
printintln(linear_interpolation(adc_value));
}
button=1;
break;

After recognising the valid push then it checks if Button 1 is pressed or Button 2 is pressed. IF
Button 1 is pressed then, the application reads the status of LEDs and shift the position of the
LEDs to left by 1. If Button 2 is pressed, then the applciation reads the contents of ADC register
using 12C read instruction and input the ADC value to linear interpolation function as shown
below.

int linear_interpolation(int adc_value)
{
int i=0,x1,y1,x2,y2,temper;
while (adc_value <TEMPERATURE_LUTI[i] [1])
{
i++;
}
//::Formula start
//Calculating Linear interpolation using the formula y=yl1+(x-x1)*(y2-y1)/(x2-x1)
//::Formula
x1=TEMPERATURE_LUT[i-1][1];
y1=TEMPERATURE_LUT[i-1][0];
x2=TEMPERATURE_LUT [i] [1];
y2=TEMPERATURE_LUT [i] [0];
temper=y1+(((adc_value-x1)*(y2-y1))/(x2-x1));
return temper;//Return Temperature value

The linear intepolation function calculates the linear interpolation value using the following
formula and returns the temperature value from temperature look up table.

//Calculating Linear interpolation using the formula y=yl+(x-x1)*(y2-y1)/(x2-x1)

int TEMPERATURE_LUT [][2]= //Temperature Look up table
{
{-10,845},{-5,808},{0,765},{5,718},{10,668},{15,614},{20,559},{25,504},{30,450},{35, 3¢

—

{40,352} ,{45,308},{560,269},{55,233},{60,202}

REV A MOS

SliceKit GPIO Example Applications 9/24

g

3.2 COM Port Demo

3.2.1 Structure

All of the files required for operation are located in the app_slicekit_simple_demo/src directory.
The files that are need to be included for use of this component in an application are:

File Description
common.h Header file for API interfaces and Look up tables for thermistor. FIXME -
what about the uart
main.xc Main file which implements the demo functionality
3.2.2 API

void app_manager(chanend c_uartTX,

chanend c_chanRX,
chanend c_process,
chanend c_end)

Polling uart RX and push button switches and send received commands to pro-
cess_data thread.

This function has the following parameters:

c_uartTX Channel to Uart TX Thread

c_chanRX Channel to Uart RX Thread

c_process Channel to process data Thread

c_end Channel to read data from process thread

void process_data(chanend c_process, chanend c_end)

process received data to see if received data is valid command or not Polling
switches to see for button press

This function has the following parameters:

c_process Channel to receive data from app manager Thread

c_end Channel to communicate to app manager thread

void uart_tx_string(chanend c_uartTX, unsigned char message[100])

Transmits byte by byte to the UART TX thread for an input string.

This function has the following parameters:

REV A

MQOS

SliceKit GPIO Example Applications 10/24

c_uartTX Channel to receive data from app Uart TX Thread

message Buffer to store array of characters

int linear_interpolation(int adc_value)

Calculates temperatue based on linear interpolation.

This function has the following parameters:

adc_value int value read from ADC

This function returns:
Returns linear interpolated Temperature value

int read_adc_value()

Read ADC value using I2C.
This function returns:

Returns ADC value

3.2.3 Usage and Implementation

The port declaration for the LEDs, Buttons, 12C and UART are declared as below. LEDs and Buttons
uses 4 bit ports, UART uses 1 bit ports both for Transmit and Receive and 12C uses 1 bit port for
SCL(I12c Clock) and SDA (12C data).

#define CORE_NUM 1
#define BUTTON_PRESS_VALUE 2
on stdcore[CORE_NUM] : buffered in port:1 p_rx = XS1_PORT_1G;
on stdcore[CORE_NUM] : out port p_tx = XS1_PORT_1C;
on stdcore [CORE_NUM]: port p_led=XS1_PORT_4A4;
on stdcore[CORE_NUM]: port p_buttonl=XS1_PORT_4C;
on stdcore [CORE_NUM]: struct r_i2c i2cOne = {
XS1_PORT_1F,
XS1_PORT_1B,
1000
¥

The app_manager APl writes the configuration settings information to the ADC as shows below.

i2c_master_write_reg(0x28, 0x00, i2c_register, 1, i2cOne); //Configure ADC by writing the
— settings to register

The select statement in the app_manager API selects one of the three cases in it, checks if there
is 10 event or timer event or any event on the Uart Receive pin. This statement monitors all the
events and executes which ever event is occurred first. The select statement in the applciation
is listed below. The statement checks if there is button press or availability of data on the Uart
Receive pin. If there is button press then it looks if the button state is same as even after 200msec.
If the buton state is same then it recognises as a valid push. If there is data on the Uart Receive

REV A MOS

SliceKit GPIO Example Applications

11/24

pin the it echoes the data back to the uart Transmit pin until > character is received in the input

data.

select

case c_end:>data:

c_end:>data;

if (data
{

}
if (data

—

{

}

break;

case uart_rx_get_byte_byref(c_uartRX,

//::Command start

if (buffer

== BUTTON_1) //Cycle LEDs on button 1 press

printstrln("Button 1 Pressed");
p_led<:(led_value);
led_value=led_value<<l1;
if (led_value 16) //If LED value is 16 then
— assigns LED value to 1 which cycles LEDs by
— button press

{

led_value=0x01;
}

== BUTTON_2) //Displays Temperature on console if

Button 2 is pressed

adc_value=read_adc_value ();

data_arr [0]=(linear_interpolation(adc_value));
printstr("Temperature is :");

printint (linear_interpolation(adc_value));
printstrln(" C");

rxState, buffer):

== '>') //IUF received data is '>' character

— then expects cmd to endter into command mode

{

REV A

3=0;
uart_rx_get_byte_byref (c_uartRX,
—

rxState, buffer)

cmd_rcvbuffer [jl=buffer;
if ((cmd_rcvbuffer [j]

== 'C'")|| (cmd_rcvbuffer[j]

< =='c')) //Checks if received data is 'C' or
— |Cl
{
jt+;
uart_rx_get_byte_byref(c_uartRX, rxState,
— buffer);
cmd_rcvbuffer [jl=buffer;
if ((cmd_rcvbuffer[j] == 'm')I| (
— cmd_rcvbuffer[j] =='M')) //Checks if
— received data is 'M' or 'm'
{
gy
uart_rx_get_byte_byref (c_uartRX,
— rxState, buffer);
cmd_rcvbuffer [jl=buffer;
if ((emd_rcvbuffer[j]l == 'D') || (
— cmd_rcvbuffer[j]l =='d"'))//

— Checks if received data is '

< D' or 'd'

MQOS

SliceKit GPIO Example Applications 12/24

uart_tx_send_byte(

— c_uartTX, '\r');
uart_tx_send_byte(

< c_uartTX, '\n');
uart_tx_string(c_uartTX,

— CONSOLE_MESSAGES [0])

=
COMMAND _MODE=1; //
— activates command
— mode as received
— data is '>cmd'
uart_tx_send_byte (
— c_uartTX, '\r');
uart_tx_send_byte(
— c_uartTX, '\n');
uart_tx_send_byte(
< c_uartTX, '>'); //
— displays '>' if
— command mode is
— activated

}
else
{
uart_tx_send_byte(
— c_uartTX, '>');
for(int i=0;i<3;i++)
uart_tx_send_byte
— (c_uartTX,
cmd_rcvbuffer
= [i1); // if
— received dta
— is not 'c'
— displays
— back the
— received
— data
}
}
else
{
uart_tx_send_byte(c_uartTX, '>1);
— //if received data is not '
— m' displays the received
— data
for (int i=0;i<2;i++)
uart_tx_send_byte(
— c_uartTX,
— cmd_rcvbuffer[i]);
}
}
else
{
uart_tx_send_byte (c_uartTX, '>');
uart_tx_send_byte(c_uartTX, cmd_rcvbuffer
= [i1);
j=0;
}
}
else
{

REV A

MQOS

SliceKit GPIO Example Applications 13/24

uart_tx_send_byte (c_uartTX ,buffer); //Echoes back
— the input characters if not in command mode
}
//::Command
while (COMMAND_MODE) //Command mode activated

{
j=0;
skip=1;
while (skip == 1)
{
//::Send to process start
select
{

case uart_rx_get_byte_byref (

— c_uartRX, rxState, buffer):
cmd_rcvbuffer [jl=buffer;
if (cmd_rcvbuffer [j++] ==

= '\r")
{
skip=0;
j=0;
while (
— cmd_rcvbuffer
= [j1 = '"\r")
{
c_process
<:
cmd_rcvbuffer
[j]1;
//

received
valid

command
and

send
the

command

to
the
process_data

theread

_tx_send_byte
(
c_uartTX
cmd_rcvbuffer
[

H

A

+

i+
¥
cmd_rcvbuffer [j
—]='\0";
c_process<:
— cmd_rcvbuffer
= [jl;

REV A MOS

SliceKit GPIO Example Applications

14/24

//::Send

//::State machine

REV A

for(int inc=0;inc
— <20;inc++)
— //Clears the
< command
— buffer
cmd_rcvbuffer

— [inc
s]=|0|;
o
j=0;
}
break;

case c_end:>data:
if (data!=EXIT && datal!=
— INVALID)
{
uart_tx_string(
<~ c_uartTX,
CONSOLE_MESSAGES
[31); /7
Displays
COmmand
Executed

{

Message on
Uart

feerrd

}

switch(data)
{
case EXIT: //Exit
— from
— command mode
COMMAND _MODE
[=0;
skip=0;
uart_tx_string
= (

c_uartTX

CONSOLE_MESSAGES
[11)

_tx_string
(

c_uartTX

CONSOLE_MESSAGES
[131)

5

k;

L s S

br

[
o

case SET_LED_1:
— //Read port
— Value and
— Set LED 1 ON

p_led:>
— data
o

H

MQOS

SliceKit GPIO Example Applications

15/24

REV A

data=data
= 10
— xE;

p_led<:

— data

o .
H

break;

case CLEAR_LED_1
://Read port
Value and
Set LED 1
OFF

p_led:>

— data
-

[

p_led<:
— data
< &O0x1

o .
H

break;

case SET_LED_2:
— //Read port

— Value and
— Set LED 2 ON
p_led:>
— data

=

p_led<:
< data
= |0
— xD;

break;

case CLEAR_LED_2:
//Read port
Value and
Set LED 2
OFF
p_led:>
< data
=

[

p_led<:
— data
— &0x2

o .
5

break;

case SET_LED_3:
— //Read port

— Value and
— Set LED 3 ON
p_led:>
< data

=

p_led<:
< data
= |0
= xB;

MQOS

SliceKit GPIO Example Applications

16/24

REV A

case

[

case

case

case

case

break;

CLEAR_LED_3:
//Read port
Value and

Set LED 3

OFF

p_led:>

— data

= 3

p_led<:
— data

— &0x4

— .
H

break;

SET_LED_4:
//Read port
Value and
Set LED 4 ON
p_led:>

— data
=
p_led<:
— data
= 10
= x7;

break;

CLEAR_LED_4:
//Read port
Value and

Set LED 4

OFF

p_led:>

— data

=

p_led<:
— data

— &0x8

o .
H

break;

CLEAR_ALL:
//sets all
four LEDs
OFF
p_led<:0
— xF;
break;

SET_ALL: //
sets all
four LEDs ON
p_led<:0
— x0;

break;

BUTTON_PRESSED

MQOS

SliceKit GPIO Example Applications

17/24

REV A

— : //Checks
— if button is
— pressed

c_end:>

— button

if (button
BUTTON_1
) /7

Prints

)

Button
1

is

pressed
on

the

Uart

L

CONSOLE_MESSAC(
= [4]1[9]=":
<

uart_tx_string
= (

— c_uartTX

~ El

— CONSOLE_]I
= [4])

—
5

o
buttonl_press

= =1;
o

}

if (button

BUTTON_2

) //

Prints

¢

Button
2

is

pressed
on

Uart

L)

CONSOLE_MESSAC(
= [4]1[9]=":
<

uart_tx_string
= (

— c_uartTX

~ El

— CONSOLE_]I
= [4])

[
5

[

MQOS

SliceKit GPIO Example Applications

18/24

REV A

MQOS

case

[

}

brea
HELP: /
Display
help
message
Uart

uart
s

e e e e e e
o o o o o o

=
»
L e A s S

button2_press
[=1;

—

k;
/

S
S on

_tx_string
(

c_uartTX

CONSOLE_MESSAGES
[141)

_tx_string
(

c_uartTX

CONSOLE_MESSAGES
71

_tx_string
(

c_uartTX

CONSOLE_MESSAGES
[s1)

_tx_string
(

c_uartTX

CONSOLE_MESSAGES
[o1)

_tx_string
(

c_uartTX

CONSOLE_MESSAGES
[101)

_tx_string
(

c_uartTX

CONSOLE_MESSAGES
[151)

_tx_string
(

c_uartTX

CONSOLE_MESSAGES

[111)
_tx_send_byte

(

SliceKit GPIO Example Applications

19/24

.
-
<

uart
s
o
o

—

brea
case READ_AD
Display
tempera
value o
Uart

adc_
e

[

[N

—

data

L e s s S

brea

case INVALID
— Display
< command

c_uartTX
"\
r');
_tx_send_byte
(
c_uartTX
"\
n');
k;
c: //
s
ture
n the

value

read_adc_value
O

_arr
[0]=(
linear_interpolat
(
adc_value
))s

_tx_string
(

c_uartTX

CONSOLE_MESSAGES
[121)

_tx_send_byte
(
c_uartTX
, (
data_arr
[0]/10)
+U0M)

_tx_send_byte
(

c_uartTX

5 (€

data_arr
[01%10)
+'0")

_tx_send_byte
(

c_uartTX

32);
_tx_send_byte
(
c_uartTX
, 'C
5
L
s //

S

REV A MOS

SliceKit GPIO Example Applications

20/24

REV A

rerl

case

[

input is
invalid
command on
the Uart
uart_tx_string
= (

c_uartTX

CONSOLE_MESSAGES
[21)
break;
CHK_BUTTONS :
//Checks if
button are
pressed and
displays on
the Uart
if (
— buttonl_press
=)

-
s
s
s

—

CONSOLE_MESSAC(
= [4]1[9]=":
o

uart_tx_string

(

c_uartTX

)

CONSOLE_]
[41)

H

//
Displays

Button

is

pressed

L A

}

if (
— button2_press
=)

CONSOLE_MESSAC(
= [4][9]1=":
o

uart_tx_string

(

c_uartTX

!

CONSOLE_!
(a1

H

rerrrty

//

MQOS

SliceKit GPIO Example Applications 21/24

Dipslays

Button

is

pressed

crrrrrrrree

if (!
buttonl_press
&&

!
button2_press

)

tered

uart_tx_string
(
c_uartTX

)

CONSOLE_]
[51)

H

/7
Displays

No
Buttons
are

pressed

L

}

buttonl_press
> =0;

button2_press

— =0;
break;
}
if (data != EXIT) //Exits
— from command mode
{
uart_tx_send_byte
— (c_uartTX,
= U\w i) g
uart_tx_send_byte
< (c_uartTX,
= '"\n');
uart_tx_send_byte
< (c_uartTX,
= ')
}
break;

}//select
//::State
}//skip

REV A MOS

SliceKit GPIO Example Applications 22/24

j=0;
}//command mode
break;
}//main select

If the received data is > character the it waits to see if the next received successive bytes are
c, m and d. If the successive received data is >cmd then the application activates comman mode
otherwise the data is echoed back to the Uart Transmit pin. The part of code which explains about
the command mode is as blow.

if (buffer == '>') //IUF received data is '>' character then expects cmd to endter into
— command mode
{
3=0;

uart_rx_get_byte_byref (c_uartRX, rxState, buffer);
cmd_rcvbuffer [jl=buffer;

if ((cmd_rcvbuffer[j]l == 'C') || (cmd_rcvbuffer[j] =='c')) //Checks if received
— data is 'C' or 'c'
{
jtts

uart_rx_get_byte_byref (c_uartRX, rxState, buffer);
cmd_rcvbuffer [jl=buffer;

if ((cmd_rcvbuffer[j] == 'm')I|| (cmd_rcvbuffer[j] =='M')) //Checks if
— received data is 'M' or 'm'
{
jt+s
uart_rx_get_byte_byref (c_uartRX, rxState, buffer);
cmd_rcvbuffer [jl=buffer;
if ((cmd_rcvbuffer[j]l] == 'D')|| (cmd_rcvbuffer[j]l] =='d'))//Checks
— if received data is 'D' or 'd'
{
uart_tx_send_byte (c_uartTX, '\r');
uart_tx_send_byte (c_uartTX, '\n');
uart_tx_string(c_uartTX,CONSOLE_MESSAGES[0]);
COMMAND_MODE=1; //activates command mode as received data
— is '>cmd'
uart_tx_send_byte (c_uartTX, '\r');
uart_tx_send_byte (c_uartTX, '\n');
uart_tx_send_byte (c_uartTX, '>'); //displays '>' if
— command mode is activated
¥
else
{
uart_tx_send_byte(c_uartTX, '>');
for (int i=0;i<3;i++)
uart_tx_send_byte (c_uartTX, cmd_rcvbuffer[il); //
— if received dta is not 'c' displays back
— the received data
¥
}
else
{
uart_tx_send_byte (c_uartTX, '>'); //if received data is not 'm'
— displays the received data
for (int i=0;i<2;i++)
uart_tx_send_byte (c_uartTX, cmd_rcvbuffer[i]);
}

REV A MOS

SliceKit GPIO Example Applications 23/24

uart_tx_send_byte (c_uartTX, '>');
uart_tx_send_byte (c_uartTX, cmd_rcvbuffer[jl);

uart_tx_send_byte(c_uartTX,buffer); //Echoes back the input characters if not in

else
{
j=0;

}
}
else
{

— command mode

}

After the command mode is active the applicaion receives all the input commands and send to the
process_data APl using a channel.The part of the code is shown below.

select

{

case uart_rx_get_byte_byref (c_uartRX, rxState, buffer):
cmd_rcvbuffer [jl=buffer;

if (cmd_rcvbuffer [j++] == '\r')
{
skip=0;
j=0;
while(cmd_rcvbuffer[j] !'= '\r')
{

}

break;

c_process<:cmd_rcvbuffer[jl; //received valid command and
— send the command to the process_data theread

uart_tx_send_byte (c_uartTX, cmd_rcvbuffer[jl);
j++;

¥

cmd_rcvbuffer [j1='\0";

c_process<:cmd_rcvbuffer[j];

for (int inc=0;inc<20;inc++) //Clears the command buffer
cmd_rcvbuffer [inc]='0";

j=0;

The process_data thread checks if any button is pressed or checks if there is any command
from app_manager thread. If there is button press then the thread sends instructions to the
app_manager thread about the button or if command is received, then it send instructions about
teh command received. The details in the process_data thread is as shown below.

Process_data thread send instructions to the app_manager thread about the command received.
The app_manager thread then implementys the state machine according to the instructions
received from the process_data thread. The state machine of app_manager thread is as below.

REV A

MQOS

SliceKit GPIO Example Applications 24/24

MOS

Copyright © 2012, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

XMOS and the XMOS logo are registered trademarks of Xmos Ltd. in the United Kingdom and other countries,
and may not be used without written permission. All other trademarks are property of their respective owners.
Where those designations appear in this book, and XMOS was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

REV A

	Overview
	Evaluation Platforms
	Recommended Hardware
	Example Applications
	app_slicekit_simple_demo
	app_slicekit_com_demo

	Programming Guide
	Simple Demo
	Structure
	API
	Usage and Implementation

	COM Port Demo
	Structure
	API
	Usage and Implementation

