
Make assembly programs compatible with the XMOS XS1 ABI

IN THIS DOCUMENT

· Symbols

· Alignment

· Sections

· Functions

· Elimination blocks

· Typestrings

· Example

The XMOS XS1 Application Binary Interface (ABI) defines the linking interface for
objects compiled from C/C++, XC and assembly code. This tutorial explains how
to write functions in assembly code that can be linked against objects generated
by the XMOS compiler.

1 Symbols

As the assembler parses an assembly file, it maintains a current address which it
increments every time it allocates storage.

Symbols are used to associate names to addresses. Symbols may be referenced
in directives and instructions, and the linker patches the corresponding address
onces its value is calculated.

The program below defines a symbol with name f that refers to the value of the
current address. It also makes the symbol globally visible from other files, which
can reference the symbol by its name.

Give the symbol f the value of the current address.
f:
Mark the symbol f as global.

.globl f

The symbol is defined by writing its name followed by a colon. The .globl directive
makes the symbol visible from outside of the file.

2 Alignment

The XS1 ABI specifies minimum alignment requirements for code and data. The
start of a function must be 2-byte aligned, and data must be word-aligned. An
address is aligned by placing the .align directive before the definition of a symbol.

Publication Date: 2013/11/11 REV B

XMOS © 2013, All Rights Reserved

Make assembly programs compatible with the XMOS XS1 ABI 2/8

The program below defines a symbol f that is defined to be the next 2-byte aligned
address.

Force 2 byte alignment of the next address.
.align 2

f:

3 Sections

Each object file may contain multiple sections. When combined by the linker,
sections with the same name in each object file are placed together at consecutive
addresses. This allows different types of code or data to be grouped together in
the final executable.

The XS1 ABI requires functions to be placed in the .text section, read-only data
in the .cp.rodata section and writable data in the .dp.data section. The default
section is the .text section, and the current section can be changed using one of
the following directives.

Section Used For Directive

.text Executable code .text

.dp.data Writable data .section .dp.data, "awd", @progbits

.cp.data Read only data .section .cp.rodata, "ac", @progbits

Figure 1:

Sections
supported by

the XMOS
linker

3.1 Data

The example program below defines a 4-byte writeable object, initialized with the
value 5, and aligned on a 4-byte boundary.

.section .dp.data , "awd", @progbits

.align 4
x:

.word 5

You can use the following directives to emit different types of data.

Directive Description

.byte Emits a 1 byte value

.short Emits a 2 byte value

.word Emits a 4 byte value

.space Emits an n-byte array of zero-initialized storage, where n is the argument to
the directive

.asciiz Emits a null terminated ASCII string

.ascii Emits an ASCII string (no implicit terminating character)

Figure 2:

Directives for
emitting
different

types of data

REV B

Make assembly programs compatible with the XMOS XS1 ABI 3/8

3.2 Arrays

The program below defines a global array that is 42 bytes in size.

.section .dp.data , "awd", @progbits

.globl a

.align 4
a:

.space 42

.globl a.globound

.set a.globound , 42

The XS1 ABI requires that for each global array f there is a corresponding global
symbol f.globound which is initialized with the number of elements of the first
dimension of the array. You can use the .set directive to perform the initialization.
Note that this value is used for array bounds checking if the variable is used by an
XC function.

4 Functions

The XS1 ABI specifies rules for passing parameters and return values between
functions. It also defines symbols for specifying the amount of hardware resources
required by the function.

4.1 Parameters and return values

Scalar values of up to 32 bits are passed as 32 bit values. The first four parameters
are passed in registers r0, r1, r2 and r3, and any additional parameters are passed
on the stack. Similarly, the first four return values are returned in the registers r0,
r1, r2 and r3, and any additional values are returned on the stack.

In the XC function prototype below, the parameters a and b are passed in registers
r0 and r1, as are the return values.

{int , int} swap(int a, int b);

An assembly implementation of this function is shown below.

.globl swap

.align 2
swap:

mov r2, r0
mov r0, r1
mov r1, r2
retsp 0

REV B

Make assembly programs compatible with the XMOS XS1 ABI 4/8

4.2 Caller and callee save registers

The XS1 ABI specifices that the registers r0, r1, r2, r3 and r11 are caller-save, and
all other registers are callee-save.

Before a function is called, the contents of all caller-save registers whose values are
required after the call must be saved. Upon returning from a function, the contents
of all callee-save registers must be the same as on entry to the function.

The following example shows the prologue and epilogue for a function that uses
the callee-save registers r4, r5 and r6. The prologue copies the register values to
the stack, and the epilogue restores the values from the stack back to the registers.

Prologue
entsp 4
stw r4, sp[1]
stw r5, sp[2]
stw r6, sp[3]

Main body of function goes here
...

Epilogue
ldw r4, sp[1]
ldw r5, sp[2]
ldw r6, sp[3]
retsp 4

4.3 Resource usage

The linker attempts to calculate the amount of resources required by each function,
including its memory requirements, and the number of threads, channel ends and
timers it uses. This allows the linker to check that the resource usage of the final
executable does not exceed that available on the target device.

For a function f, the resource usage symbols defined by the XS1 ABI are as follows.

Symbol Description

f.nstackwords Stack size (in words)

f.maxthreads Maximum number of threads allocated, including the current thread

f.maxchanends Maximum number of channel ends allocated

f.maxtimers Maximum number of timer allocated

Figure 3:

Resource
usage

symbols
defined by

the XS1 ABI

You can define resource usage symbols using the .linkset directive. If a function
is global, you should also make the resource usage symbols global.

REV B

Make assembly programs compatible with the XMOS XS1 ABI 5/8

The example program below defines resource usage symbols for a function f that
uses 4 words of stack, 2 threads, 0 timers and 2 channel ends.

.globl f

.globl f.nstackwords

.linkset f.nstackwords , 5

.globl f.maxthreads

.linkset f.maxthreads , 2

.globl f.maxtimers

.linkset f.maxtimers , 0

.globl f.maxchanends

.linkset f.maxchanends , 2

In more complex cases, you can use the maximum ($M) and addition (+) operators
to build expressions for the resource usage that are evaluated by the linker. If
two functions are called in sequence, you should compute the maximum for the
two functions, and if called in parallel you should compute the sum for the two
functions.

The example program below defines resource usage symbols for a function f that
extends the stack by 10 words, allocates two timers and calls functions g and h in
sequence before freeing the timer and returning.

.globl f

.globl f.nstackwords

.linkset f.nstackwords , 10 + (g.nstackwords $M h.nstackwords)

.globl f.maxthreads

.linkset f.maxthreads , 1 + ((g.maxthreads -1) $M (h.maxthreads -1))

.globl f.maxtimers

.linkset f.maxtimers , 2 + (g.maxtimers $M h.maxtimers)

.globl f.maxchanends

.linkset f.maxchanends , 0 + (g. maxchanends $M h.maxchanends)

You can omit the definition of a resource usage symbol if its value is unknown, for
example if the function makes an indirect call through a function pointer. If the
value of the symbol is required to satisfy a relocation in the program, however, the
program will fail to link.

4.4 Side effects

The XC language requires that functions used as boolean guards in select state-
ments have no side effects. It also specifies that functions called from within a
transaction statement do not declare channels. By default, a function f is assumed
to be side-effecting and to declare channels unless you explicitly set the following
symbols to zero.

REV B

Make assembly programs compatible with the XMOS XS1 ABI 6/8

Symbol Description

f.locnoside Specifies whether the function is side effecting

f.locnochandec Specifies whether the function allocates a channel end

Figure 4:

Symbols for
denoting

side-effects

5 Elimination blocks

The linker can eliminate unused code and data. Code and data must be placed in
elimination blocks for it to be a candidate for elimination. At final link time, if all
of the symbols inside an elimination block are unreferenced, the block is removed
from the final image.

The example program below declares a symbol within an elimination block.

.cc_top f.function , f
f:

.cc_bottom f.function

The first argument to the .cc_top directive and the .cc_bottom directive is the
name of the elimination block. The .cc_top directive takes an additional argument,
which is a symbol on which the elimination of the block is predicated on. If the
symbol is referenced, the block is not eliminated.

Each elimination block must be given a name which is unique within the assembly
file.

6 Typestrings

A typestring is a string used to describe the type of a function or variable. The
encoding of type information into a typestring is specified by the XS1 ABI. The
following directives are used to associate a typestring with a symbol.

Binding Directive

Global .globl name, "typestring"
External .extern name, "typestring"
Local .locl name, "typestring"

Figure 5:

Typestring
directives

When a symbol from one object file is matched with a symbol with the same name
in another object, the linker checks whether the typestrings are compatible. If
the typestrings are compatible linking continues as normal. If the typestrings
are function types which differ only in the presence of array bound parameters
the linker generates a thunk and replaces uses of the symbol with this thunk to
account for the difference in arguments. The linker errors on all other typestring
mismatches. This ensures that programs that are compiled from multiple files are
as robust as those compiled from a single file.

REV B

Make assembly programs compatible with the XMOS XS1 ABI 7/8

If you fail to emit a typestring for a symbol, comparisons against this symbol are
assumed to be compatible. If you are implementing a function which takes an
array of unknown size, you should emit a typestring to allow it to be called from
both C and XC. In other cases, typestrings can be omitted, but error checking is
not performed.

7 Example

The program below prints the words “Hello world” to standard output.

const char str[] = "Hello world";

int main() {
printf(str);
return 0;

}

The assembly implementation below complies with the XS1 ABI.

REV B

Make assembly programs compatible with the XMOS XS1 ABI 8/8

.extern printf , "f{si}(p(c:uc),va)"

.section .cp.rodata , "ac", @progbits

.globl str , "a(12:c:uc)"

.cc_top str.data , str

.align 4
str :

.asciiz "Hello world"
.cc_bottom str.data

.globl str.globound

.set str.globound , 12

.text

.globl main , "f{si}(0)"
.cc_top main.function , main

.align 2
main:

entsp 1
ldaw r11 , cp[str]
mov r0, r11
bl printf
ldc r0, 0
retsp 0

.cc_bottom main.function
.globl main.nstackwords
.linkset main .nstackwords , 1 + printf.nstackwords
.globl main.maxthreads
.linkset main.maxthreads , printf.maxthreads
.globl main.maxtimers
.linkset main.maxtimers , 0 + printf.maxtimers
.globl main.maxchanends
.linkset main.maxchanends , 0 + printf.maxchanends
.linkset main.locnochandec , 1
.linkset main.locnoside , 1

By defining symbols for resource usage, the linker can check whether the program
fits on a target device. By providing typestrings, the linker can check type compati-
bilty when different object files are linked. The linker can eliminate unused code
and data since it is placed in elimination blocks.

Copyright © 2013, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

REV B

	Symbols
	Alignment
	Sections
	Functions
	Elimination blocks
	Typestrings
	Example

