
LCD component

REV A

Publication Date: 2013/10/30

XMOS © 2013, All Rights Reserved.

LCD component 2/19

Table of Contents

1 Overview 3
1.1 LCD component . 3

1.1.1 Features . 3
1.1.2 Memory requirements . 3
1.1.3 Resource requirements . 4
1.1.4 Performance . 4

1.2 Touch screen component . 4
1.2.1 Features . 4
1.2.2 Memory requirements . 4
1.2.3 Resource requirements . 5

2 Hardware requirements 6
2.1 Recommended Hardware . 6

2.1.1 sliceKIT . 6
2.2 Demonstration applications . 6

2.2.1 LCD Demo Application . 6
2.2.2 Touch screen demo application . 6
2.2.3 Display controller application . 6

3 API 8
3.1 module_lcd . 8

3.1.1 Configuration defines . 8
3.1.2 Implementation specific defines . 8
3.1.3 API . 9

3.2 module_touch_controller_lib . 10
3.2.1 Configuration defines . 10
3.2.2 API . 11

4 Programming guide 13
4.1 Source code structure . 13
4.2 Additional files . 13
4.3 How to select the LCD target . 13
4.4 Executing the project . 14
4.5 Software requirements . 14

5 Touch controller programming guide 15
5.1 Source code structure . 15
5.2 How to develop an application . 15
5.3 Executing the project . 17
5.4 Software requirements . 17

6 Example applications 18
6.1 app_lcd_demo . 18
6.2 Application notes . 18

6.2.1 Getting started . 18
6.3 app_touch_controller_lib_demo . 19
6.4 Application notes . 19

6.4.1 Getting started . 19

REV A

1 Overview

IN THIS CHAPTER

· LCD component

· Touch screen component

1.1 LCD component

The LCD component is used to drive a single graphics LCD module up to 800 *
600 pixels with pixel clocks of up to 25MHz.

1.1.1 Features

· Standard component to support different LCD displays with an RGB interface.

· Different color depths 32 bpp, 16 bpp, etc. based on user configuration.

· Resolution of up to 800 * 600 pixels.

· Outputs to a CMOS interface.

· Configurability of * LCD pixel dimensions, * clock rate, * horizontal and vertical
timing requirements, * port mapping of the LCD.

· Requires a single core for the server. * The function lcd_server requires just
one core, the client functions, located in lcd.h are very low overhead and are
called from the application.

1.1.2 Memory requirements

Resource Usage

Stack 92 bytes

Program 2168 bytes

REV A

LCD component 4/19

1.1.3 Resource requirements

Resource Usage

Channels 1

Timers 0

Clocks 1

Logical Cores 1

1.1.4 Performance

The achievable effective bandwidth varies according to the available xCORE MIPS.
The maximum pixel clock supported is 25MHz.

1.2 Touch screen component

The touch screen component is used to read the touch coordinates from the touch
screen controller AD7879-1.

1.2.1 Features

· Standard components to support touch screen controller with I2C serial interface

· Supports 4-wire resistive touch screens of different sizes

· Resolution of 4096 * 4096 points

· Pen-down interrupt signal supported

· Outputs touch coordinates

· module_touch_controller_lib requires a single core while
module_touch_controller_server requires an additional core for the
server.

1.2.2 Memory requirements

app_touch_controller_lib_demo

Resource Usage

Stack 304 bytes

Program 3160 bytes

app_touch_controller_server_demo

REV A

LCD component 5/19

Resource Usage

Stack 420 bytes

Program 3576 bytes

1.2.3 Resource requirements

app_touch_controller_lib_demo

Resource Usage

Channels 0

Timers 3

Clocks 1

Logical Cores 1

app_touch_controller_server_demo

Resource Usage

Channels 1

Timers 3

Clocks 1

Logical Cores 2

REV A

2 Hardware requirements

IN THIS CHAPTER

· Recommended Hardware

· Demonstration applications

2.1 Recommended Hardware

2.1.1 sliceKIT

This module may be evaluated using the sliceKIT Modular Development Platform,
available from digikey. Required board SKUs are:

· XP-SKC-L2 (sliceKIT L16 Core Board) plus XA-SK-SCR480 plus XA-SK-XTAG2
(sliceKIT XTAG adaptor)

2.2 Demonstration applications

2.2.1 LCD Demo Application

The LCD demo application shows how a buffer of image data can be written to the
480x272 LCD screen that is supplied with the XA-SK-SCR480 Slice Card.

· Package: sc_lcd

· Application: app_lcd_demo

2.2.2 Touch screen demo application

The touch screen demo application shows how a touch event is processed and the
touch coordinates are fetched from the touch screen controller chip fitted on the
XA-SK-SCR480 Slice Card.

· Package: sc_lcd

· Applications: app_touch_controller_lib_demo

2.2.3 Display controller application

This combination demo employs the module_lcd along with the module_sdram and
the module_display_controller framebuffer framework component to implement
a 480x272 display controller.

Required board SKUs for this demo are:

REV A

LCD component 7/19

· XP-SKC-L2 (sliceKIT L16 Core Board) plus XA-SK-XTAG2 (sliceKIT XTAG adaptor)

· XA-SK-SCR480 for the LCD

· XA-SK-SDRAM for the SDRAM

· Package: sw_display_controller

· Application: app_display_controller

REV A

3 API

IN THIS CHAPTER

· module_lcd

· module_touch_controller_lib

The component sc_lcd includes the modules module_lcd, module_text_display and
module_touch_controller_lib.

3.1 module_lcd

3.1.1 Configuration defines

The module_lcd includes device support defines, each support header, located in the devices
directory defines a number of parameters. It is sufficient for the user to specify which device to
support in the lcd_conf.h for the device to be correctly supported. To do this lcd_conf.h must
include the define: :: #define LCD_PART_NUMBER p

· AT043TN24V7
· K430WQAV4F
· K70DWN0V1F

3.1.2 Implementation specific defines

It is possible to override the default defines when a part number is selected. The defines available
are:

LCD_WIDTH
This define is used to represent the width of the LCD panel in pixels.

LCD_HEIGHT
This define is used to represent the height of the LCD panel in pixels.

LCD_BITS_PER_PIXEL
Count of bits used to set a pixels RGB value, i.e. if the screen was wired for rgb565 then the
LCD_BITS_PER_PIXEL would be 16, rgb888 would be 24. This is independant of the actual bit
depth of the lcd.

LCD_HOR_FRONT_PORCH
The horizontal front porch timing requirement given in pixel clocks.

LCD_HOR_BACK_PORCH
The horizontal back porch timing requirement given in pixel clocks.

LCD_VERT_FRONT_PORCH
The vertical front porch timing requirement given in horizontal time periods.

REV A

LCD component 9/19

LCD_VERT_BACK_PORCH
The vertical back porch timing requirement given in horizontal time periods.

LCD_HOR_PULSE_WIDTH
The horizontal pulse width timing requirement given in pixel clocks. This is the duration that
the hsync signal should go low to denote the start of the horizontal frame. Set to 0 when
hsync is not necessary.

LCD_VERT_PULSE_WIDTH
The vertical pulse width timing requirement given in vertical time periods. This is the duration
that the vsync signal should go low to denote the start of the vertical frame. Set to 0 when
vsync is not necessary.

LCD_FREQ_DIVIDEND
The defines FREQ_DIVIDEND and FREQ_DIVISOR are used to calculate the frequency of the
clock used for LCD. The frequency configured = (FREQ_DIVIDEND / FREQ_DIVISOR) in MHz

LCD_FREQ_DIVISOR
The defines FREQ_DIVIDEND and FREQ_DIVISOR are used to calculate the frequency of the
clock used for LCD. The frequency configured = (FREQ_DIVIDEND / FREQ_DIVISOR) in MHz

LCD_FAST_WRITE
The define enables a faster LCD write function, however, it produces more code. Use when
a 25MHz pixel clock is required. It cannot be used with LCD_HOR_PULSE_WIDTH > 0 or
LCD_VERT_PULSE_WIDTH > 0 as horizontal and veritcal sync signals are not supported in
LCD_FAST_WRITE mode.

3.1.3 API

· lcd.xc
· lcd.h
· lcd_defines.h
· lcd_assembly.S
· /devices

where the following functions can be found:

void lcd_init(chanend c_lcd)
LCD init function.

This sets the lcd into a state where it is ready to accept data.

This function has the following parameters:

c_lcd The channel end connecting to the lcd server.

static void lcd_req(chanend c_lcd)
Receives the request for data from the LCD server.

This function has the following parameters:

c_lcd The channel end connecting to the lcd server.

REV A

LCD component 10/19

static void lcd_update(chanend c_lcd, unsigned buffer[])
LCD update function.

This sends a buffer of data to the lcd server to to sent to the lcd.

Note, no array bounds checking is performed.

This function has the following parameters:

c_lcd The channel end connecting to the lcd server.

buffer[] The data to be emitted to the lcd screen, stored in rgb565.

static void lcd_update_p(chanend c_lcd, unsigned buffer)
C interface for LCD update function.

This sends a buffer of data to the lcd server to to sent to the lcd.

Note, no array bounds checking is performed.

This function has the following parameters:

c_lcd The channel end connecting to the lcd server.

buffer A pointer to data to be emitted to the lcd screen, stored in rgb565.

void lcd_server(chanend c_client, lcd_ports &ports)
The LCD server thread.

This function has the following parameters:

c_client The channel end connecting to the client.

ports The structure carrying the LCD port details.

3.2 module_touch_controller_lib

The device-specific configuration defines and user defines are listed in touch_lib_conf.h.

3.2.1 Configuration defines

TOUCH_LIB_LCD_WIDTH
This define is used to represent the width of the LCD panel in pixels.

TOUCH_LIB_LCD_HEIGHT
This define is used to represent the height of the LCD panel in pixels.

TOUCH_LIB_TS_WIDTH
This define is used to represent the width of the touch screen in points.

TOUCH_LIB_TS_HEIGHT
This define is used to represent the height of the touch screen in points.

REV A

LCD component 11/19

3.2.2 API

· touch_controller_lib.xc
· touch_controller_lib.h
· /AD7879-1

where the following functions can be found:

void touch_lib_init(touch_controller_ports &ports)
The touch controller initialisation.

This function has the following parameters:

ports The structure containing the touch controller port details.

void touch_lib_get_touch_coords(touch_controller_ports &ports,
unsigned &x,
unsigned &y)

Get the current touch coordinates from the touch controller.

The returned coordinates are not scaled.

This function has the following parameters:

ports The structure containing the touch controller port details.

x The X coordinate of point of touch.

y The Y coordinate of point of touch.

select touch_lib_touch_event(touch_controller_ports &ports)
A select function that will wait until the touch controller reports a touch event.

This function has the following parameters:

ports The structure containing the touch controller port details.

void touch_lib_get_next_coord(touch_controller_ports &ports,
unsigned &x,
unsigned &y)

This function will block until the controller reports a touch event at which point it
will return the coordinates of that event.

The coordinates are not scaled.

This function has the following parameters:

ports The structure containing the touch controller port details.

REV A

LCD component 12/19

x The X coordinate of point of touch.

y The Y coordinate of point of touch.

void touch_lib_scale_coords(unsigned &x, unsigned &y)
The function to scale coordinate values (from the touch point coordinates to the
LCD pixel coordinates).

This function has the following parameters:

x The scaled X coordinate value

y The scaled Y coordinate value

REV A

4 Programming guide

IN THIS CHAPTER

· Source code structure

· Additional files

· How to select the LCD target

· Executing the project

· Software requirements

This section provides information on how to program applications using the LCD
module.

4.1 Source code structure

Project File Description

module_lcd lcd.h Header file containing the APIs for the LCD component

lcd.xc File containing the implementation of the LCD
component

lcd_defines.xc Header file containing the user configurable defines
for the LCD

lcd_assembly.S Assembly file containing the fast_write functionality
for the LCD.

/devices Folder containing header files of configurations for
LCDs

Figure 1:

Project
structure

4.2 Additional files

File name Description

generate.pl Perl file for generating a fast write function body for LCD screens of
arbitrary width.

Figure 2:

Additional
files

4.3 How to select the LCD target

The module has been designed to support multiple LCD targets. Each target has a
specific configuration and have been provided with the component int the /devices
directory. The module only supports a single LCD target per xCORE.

To select the target the following should be done:

REV A

LCD component 14/19

· Create a header in the application project called lcd_conf.h
· In the lcd_conf.h add the define #define LCD_PART_NUMBER AT043TN24V7.

This will include the “lcd_defines_AT043TN24V7.h” required for the se-
lected target.

· Any specific overrides should be added to the lcd_conf.h. For
example, to override the LCD_HEIGHT to 600 pixels add the line
#define LCD_HEIGHT 600.

· The application should also include the port mapping for the LCD as per
the hardware used. A variable of the type structure lcd_ports should be
created and must include the port information

Example: In the application file

struct lcd_ports lcd_ports = {
XS1_PORT_1G ,
XS1_PORT_1F ,
XS1_PORT_16A ,
XS1_PORT_1B ,
XS1_PORT_1C ,
XS1_CLKBLK_1

};

The declared variable lcd_ports is used by the LCD server call to address these
ports. A core should have the lcd_server running on it and it should be connected
by a channel to the application, for example:

chan c_lcd;
par {

lcd_server(c_lcd , lcd_ports);
application(c_lcd);

}

4.4 Executing the project

The module by itself cannot be built or executed separately. It must be linked
in to an application which needs LCD display. Once the module is linked to the
application, the application can be built and tested for driving a LCD screen.

1. The module name module_lcd should be added to the list of MODULES in
the application project build options.

2. Now the module is linked to the application and can be directly used

4.5 Software requirements

The module is built on XDE Tool version 12.0 The module can be used in version
12.0 or any higher version of xTIMEcomposer.

REV A

5 Touch controller programming guide

IN THIS CHAPTER

· Source code structure

· How to develop an application

· Executing the project

· Software requirements

This section provides information on how to program applications using the touch
controller module.

5.1 Source code structure

5.2 How to develop an application

The modules have been designed to support two types of interfacing with the touch
screen controller; one for direct interfacing and the other for interfacing through a
server. Only one of these two modules should be used by the application program.

· Create a header file in the application project called touch_lib_conf.h or
touch_server_conf.h.

· In the header file, add the defines for conditional compilation and device-
specific parameters.

· The application should also include the port mapping for the touch screen
controller. A variable of the type structure touch_controller_ports should
be created and must include the port information.

Example: In the application file

struct touch_controller_ports ports = {
XS1_PORT_1E ,
XS1_PORT_1H ,
1000,
XS1_PORT_1D

};

When module_touch_controller_server is used, a core should have the
touch_controller_server running on it and it should be connected by a channel
to the application, for example:

REV A

LCD component 16/19

Project File Description

module_touch_controller_lib touch_controller_lib.h Header file
containing the APIs
for interfacing
touch controller
component

touch_controller_lib.xc File containing the
implementation of
APIs

/AD7879-1 Folder containing
files for the
implementation of
touch controller
component

touch_controller_impl.h Header file
containing the APIs
for implementing
touch controller
component

touch_controller_impl.xc File containing the
implementation of
touch controller
component

module_touch_controller_server touch_controller_server.h Header file
containing the APIs
for interfacing
touch controller
component

touch_controller_server.xc File containing the
implementation of
APIs

/AD7879-1 Folder containing
files for the
implementation of
touch controller
component

touch_controller_impl.h Header file
containing the APIs
for implementing
touch controller
component

touch_controller_impl.xc File containing the
implementation of
touch controller
component

Figure 3:

Project
structure

chan c;
par {

touch_controller_server(c, ports);
app(c);

}REV A

LCD component 17/19

5.3 Executing the project

The touch controller module by itself cannot be built or executed separately. It
must be linked into an application. The application also depends on I2C module.
Once the modules are linked to the application, the application can be built and
run.

1. The module name module_touch_controller_lib or
module_touch_controller_server should be added to the list
of MODULES in the application project build options.

2. The module name module_i2c_master should also be added.

3. Now the modules are linked to the application and can be directly used

5.4 Software requirements

The modules are built on XDE Tool version 12.0 The modules can be used in
version 12.0 or any higher version of xTIMEcomposer.

REV A

6 Example applications

IN THIS CHAPTER

· app_lcd_demo

· Application notes

· app_touch_controller_lib_demo

· Application notes

This tutorial describes the demo applications included in the XMOS LCD software
component. §2.1 describes the required hardware setups to run the demos.

6.1 app_lcd_demo

This application demonstrates how the module is used to write image data to the
LCD screen. The purpose of this application is to show how data is passed to the
lcd_server

6.2 Application notes

1. lcd_server requires a single logical core.

2. lcd_init must be called before lcd_update_p or lcd_update are called. This
puts the LCD server into a state ready to accept data.

3. lcd_update and lcd_update_p are used to send an array of pixel data to the
LCD server. There is a real-time requirement that this function is called often
enough to maintain the display. lcd_update_p is the C interface to the LCD
server, it takes a pointer to an array rather than the array itself.

4. lcd_req is a function (also a select handler) that acknowledges the LCDs request
for the next line of pixel data.

5. The LCD server does no buffering of pixel line arrays, therefore, for every
lcd_req there must be only one lcd_update or lcd_update_p. Likewise for every
lcd_update or lcd_update_p there must be only one lcd_req.

6. The pixel array must be on the same tile as the lcd_server.

6.2.1 Getting started

1. Plug the XA-SK-LCD Slice Card into the ‘STAR’ slot of the sliceKIT Core Board

2. Plug the XA-SK-XTAG2 Card into the sliceKIT Core Board.

REV A

LCD component 19/19

3. Ensure the XMOS LINK switch on the XA-SK-XTAG2 is set to “off”.

4. Ensure the jumper on the XA-SK-SCR480 is bridged if the back light is required.

5. Open app_lcd_demo.xc and build the project.

6. Run the program

The output produced should look like a bouncing “X” on the LCD screen.

6.3 app_touch_controller_lib_demo

This application demonstrates how the module module_touch_controller_lib is
used to fetch the touch coordinates from the touch screen controller.

6.4 Application notes

1. touch_lib_init must be called before calling touch_lib_req_next_coord
or/and touch_lib_req_next_coord_timed.

2. touch_lib_req_next_coord and touch_lib_req_next_coord_timed wait for
touch event and then read the touch coordinates stored in the result registers
of touch screen controller. touch_lib_req_next_coord_timed computes the
time delay in touch event from the function call.

6.4.1 Getting started

1. Plug the XA-SK-LCD Slice Card into the ‘TRIANGLE’ slot of the sliceKIT Core
Board

2. Plug the XA-SK-XTAG2 Card into the sliceKIT Core Board.

3. Click on the app_touch_controller_lib_demo and build the project.

4. Run the demo.

Copyright © 2013, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

XMOS and the XMOS logo are registered trademarks of Xmos Ltd. in the United Kingdom and other countries,
and may not be used without written permission. All other trademarks are property of their respective owners.
Where those designations appear in this book, and XMOS was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

REV A

	Overview
	LCD component
	Features
	Memory requirements
	Resource requirements
	Performance

	Touch screen component
	Features
	Memory requirements
	Resource requirements

	Hardware requirements
	Recommended Hardware
	sliceKIT

	Demonstration applications
	LCD Demo Application
	Touch screen demo application
	Display controller application

	API
	module_lcd
	Configuration defines
	Implementation specific defines
	API

	module_touch_controller_lib
	Configuration defines
	API

	Programming guide
	Source code structure
	Additional files
	How to select the LCD target
	Executing the project
	Software requirements

	Touch controller programming guide
	Source code structure
	How to develop an application
	Executing the project
	Software requirements

	Example applications
	app_lcd_demo
	Application notes
	Getting started

	app_touch_controller_lib_demo
	Application notes
	Getting started

