
Ethernet Slice Simple Webserver Application Quickstart

IN THIS DOCUMENT

· Hardware setup

· Import and build the application

· Run the application

· Troubleshooting

· Next steps

This simple demonstration of xTIMEcomposer Studio functionality uses the sliceKIT
Ethernet Slice together with the xSOFTip TCP/IP Ethernet component to:

· Run a TCP/IP stack on the xCORE

· Run a very simple HTTP server to display a “hello world” webpage

1 Hardware setup

The sliceKIT Core Board has four slots with edge conectors: SQUARE, CIRCLE,
TRIANGLE and STAR.

To setup up the system:

1. Connect the Ethernet Slice Card to the sliceKIT Core Board using the connector
marked with the CIRCLE.

2. Connect the xTAG Adapter to sliceKIT Core Board and connect XTAG-2 to the
adapter.

3. Connect the xTAG-2 to host PC. Note that a USB cable is not provided with the
sliceKIT starter kit.

4. Plug the power supply into the sliceKIT Core Board and turn the power supply
on.

2 Import and build the application

1. On your PC, open xTIMEcomposer. You need to be in the edit perspective
(Window->Open Perspective->XMOS Edit). If the XMOS Edit option isn’t in the
list, you are already in the edit perspective.

2. Locate the 'Simple HTTP Demo' item in the xSOFTip pane on the bottom left of
the window and drag it into the Project Explorer window in the xTIMEcomposer.

Publication Date: 2014/6/12 Document Number: XM002033A

XMOS © 2014, All Rights Reserved

Ethernet Slice Simple Webserver Application Quickstart 2/12

Figure 1:

Hardware
Setup for

Simple HTTP
Demo

This will also cause the modules on which this application depends to be
imported as well.

3. Click on the app_simple_webserver item in the Explorer pane then click on the
build icon (hammer) in xTIMEcomposer. Check the console window to verify
that the application has built successfully.

For help in using xTIMEcomposer, try the xTIMEcomposer tutorials, which you can
find by selecting Help->Tutorials from the xTIMEcomposer menu.

Note that the Developer Column in the xTIMEcomposer on the right hand side
of your screen provides information on the xSOFTip components you are using.
Select the module_xtcp component in the Project Explorer, and you will see its
description together with API documentation (reached by double clicking on the
Documentation item within the project). If you view other documentation, you can
get back to this quickstart guide by cliking the back icon in the Developer Column
until you return to this quickstart guide.

3 Run the application

Now that the application has been compiled, the next step is to run it on the
sliceKIT Core Board using the tools to load the application over JTAG (via the
XTAG-2 and XTAG Adaptor Card) into the xCORE multicore microcontroller.

XM002033A

Ethernet Slice Simple Webserver Application Quickstart 3/12

1. Click on the Run icon (the white arrow in the green circle). The debug console
window in xTIMEcomposer should then display the message:

** WELCOME TO THE SIMPLE WEBSERVER DEMO**

This has been generated from the application code via a call to the printstr()
function.

2. Connect the sliceKIT Ethernet Slice your network via an ethernet cable. The
application is configured by default to use DHCP to obtain an IP address. If you
wish to change this to a static IP address edit the main.xc file in the application
(you can reach this via the Project Explorer in the xTIMEcomposer) and change
the ipconfig data structure.

3. The console window should display a message like:

IP Address: 192.168.0.4

the actual IP address will depend on your local network.

4. From a PC connected to the same network, open a web browser and open the
link:

http ://192.168.0.4

using the IP adress printed out by the application. This should display a “hello
world” webpage. You have now got the ethernet slice up and running.

4 Troubleshooting

If the demo does not work try the following:

· Ensure the Ethernet Slice Card is connected to the CIRCLE connector of the core
board.

· Ensure the slice network cable is fully connected. There are activity LEDs next to
the ethernet connector that should illuminate if connected.

· Ensure that both the PC and Ethernet Slice card are connected to the same
network and can route to each other. If you are using a dynamically allocated
address, make sure your DHCP server is configured correctly. If using a static
address, make sure your PC is configured to talk to that address (in Windows
you need to check your Network Adapter TCP/IP settings).

5 Next steps

5.1 Look at the Code

1. Examine the application code. In xTIMEcomposer navigate to the src directory
under app_simple_webserver and double click on the main.xc file within it. The
file will open in the central editor window.

XM002033A

Ethernet Slice Simple Webserver Application Quickstart 4/12

2. Find the main function and note that it runs the ethernet_xtcp_server() (which
runs the ethernet driver and tcp stack) and the xhttpd() function in parallel.

3. Look at the xhttpd.xc and httpd.xc files. These implement the webserver
logic that connects to the TCP/IP stack. In particular the httpd_handle_event
function that responds to a TCP event over an xC channel and performs the
functions of the webserver. See the TCP/IP programming guide for details on
how the xtcp stack works.

5.2 Look at Other Examples

For a more complex embedded wbeserver demo that allows user interaction try the
Slicekit GPIO and Ethernet Combo Demo demo application which can be found
under sliceKIT->Demos categroy in the xSOFTip Explorer pane within xTIMEcom-
poser.

5.3 Go through this code in detail

This last section is optional and walks through the main application code in detail.

The toplevel main of this application sets up the different components running on
different logical cores on the device. It can be found in the file main.xc.

First the TCP/IP server is run on the tile given by the define ETHERNET_DEFAULT_TILE
(supplied by the ethernet_board_support.h header which gives defines
for common XMOS development boards.). It is run via the function
ethernet_xtcp_server(). The server runs both the ethernet code to communicate
with the ethernet phy and the tcp server on two logical cores.

on ETHERNET_DEFAULT_TILE:
ethernet_xtcp_server(xtcp_ports ,

ipconfig ,
c_xtcp ,
1);

The client to the TCP/IP server is run as a separate task and connected to the TCP/IP
server via the first element c_xtcp channel array. The function xhttpd implements
the web server.

on tile [0]: xhttpd(c_xtcp [0]);

5.3.1 The webserver mainloop

The webserver is implemented in the xhttpd function in xhttpd.xc. This function
implements a simple loop that just responds to events from the TCP/IP server.
When an event occurs it is passed onto the httpd_handle_event handler.

XM002033A

Ethernet Slice Simple Webserver Application Quickstart 5/12

void xhttpd(chanend tcp_svr)
{

xtcp_connection_t conn;
printstrln("** WELCOME TO THE SIMPLE WEBSERVER DEMO**");
// Initiate the HTTP state
httpd_init(tcp_svr);

// Loop forever processing TCP events
while (1)

{
select

{
case xtcp_event(tcp_svr , conn):

httpd_handle_event(tcp_svr , conn);
break;

}

}
}

The webserver event handler The event handler is implemented in httpd.c
and contains the main logic of the web server. The server can handle several
connections at once. However, events for each connection may be interleaved
so the handler needs to store separate state for each one. The httpd_state_t
structures holds this state:

typedef struct httpd_state_t {
int active; //< Whether this state structure is being used

// for a connection
int conn_id; //< The connection id
char *dptr; //< Pointer to the remaining data to send
int dlen; //< The length of remaining data to send
char *prev_dptr; //< Pointer to the previously sent item of data

} httpd_state_t;

httpd_state_t connection_states[NUM_HTTPD_CONNECTIONS];

The http_init function is called at the start of the application. It initializes
the connection state array and makes a request to accept incoming new TCP
connections on port 80 (using the xtcp_listen() function):

XM002033A

Ethernet Slice Simple Webserver Application Quickstart 6/12

void httpd_init(chanend tcp_svr)
{

int i;
// Listen on the http port
xtcp_listen(tcp_svr , 80, XTCP_PROTOCOL_TCP);

for (i = 0; i < NUM_HTTPD_CONNECTIONS; i++)
{

connection_states[i]. active = 0;
connection_states[i].dptr = NULL;

}
}

When an event occurs the httpd_handle_event function is called. The behaviour of
this function depends on the event type. Firstly, link status events are ignored:

XM002033A

Ethernet Slice Simple Webserver Application Quickstart 7/12

void httpd_handle_event(chanend tcp_svr , xtcp_connection_t *conn)
{

// We have received an event from the TCP stack , so respond
// appropriately

// Ignore events that are not directly relevant to http
switch (conn ->event)

{
case XTCP_IFUP: {

xtcp_ipconfig_t ipconfig;
xtcp_get_ipconfig(tcp_svr , &ipconfig);

#if IPV6
unsigned short a;
unsigned int i;
int f;
xtcp_ipaddr_t *addr = &ipconfig.ipaddr;
printstr("IPV6 Address = [");
for(i = 0, f = 0; i < sizeof(xtcp_ipaddr_t); i += 2) {

a = (addr ->u8[i] << 8) + addr ->u8[i + 1];
if(a == 0 && f >= 0) {

if(f++ == 0) {
printstr("::");

}
} else {

if(f > 0) {
f = -1;

} else if(i > 0) {
printstr(":");

}
printhex(a);

}
}
printstrln("]");

#else
printstr("IP Address: ");
printint(ipconfig.ipaddr [0]);printstr(".");
printint(ipconfig.ipaddr [1]);printstr(".");
printint(ipconfig.ipaddr [2]);printstr(".");
printint(ipconfig.ipaddr [3]);printstr("\n");

#endif
}
return;

case XTCP_IFDOWN:
case XTCP_ALREADY_HANDLED:

return;
default:

break;
}

For other events, we first check that the connection is definitely an http connection
(is directed at port 80) and then call one of several event handlers for each type

XM002033A

Ethernet Slice Simple Webserver Application Quickstart 8/12

of event. The is a separate function for new connections, receiving data, sending
data and closing connections:

if (conn ->local_port == 80) {
switch (conn ->event)

{
case XTCP_NEW_CONNECTION:

httpd_init_state(tcp_svr , conn);
break;

case XTCP_RECV_DATA:
httpd_recv(tcp_svr , conn);
break;

case XTCP_SENT_DATA:
case XTCP_REQUEST_DATA:
case XTCP_RESEND_DATA:

httpd_send(tcp_svr , conn);
break;

case XTCP_TIMED_OUT:
case XTCP_ABORTED:
case XTCP_CLOSED:

httpd_free_state(conn);
break;

default:
// Ignore anything else
break;

}
conn ->event = XTCP_ALREADY_HANDLED;

}

The following sections describe the four handler functions.

Handling Connections When a XTCP_NEW_CONNECTION event occurs we need to
associate some state with the connection. So the connection_states array is
searched for a free state structure.

void httpd_init_state(chanend tcp_svr , xtcp_connection_t *conn)
{

int i;

// Try and find an empty connection slot
for (i=0;i<NUM_HTTPD_CONNECTIONS;i++)

{
if (! connection_states[i]. active)

break;
}

If we don’t find a free state we cannot handle the connection so xtcp_abort()‘ is
called to abort the connection.

XM002033A

Ethernet Slice Simple Webserver Application Quickstart 9/12

if (i == NUM_HTTPD_CONNECTIONS)
{

xtcp_abort(tcp_svr , conn);
}

If we can allocate the state structure then the elements of the structure are ini-
tialized. The function xtcp_set_connection_appstate() is then called to associate
the state with the connection. This means when a subsequent event is signalled on
this connection the state can be recovered.

else
{

connection_states[i]. active = 1;
connection_states[i]. conn_id = conn ->id;
connection_states[i].dptr = NULL;
xtcp_set_connection_appstate(

tcp_svr ,
conn ,
(xtcp_appstate_t) &connection_states[i]);

When a XTCP_TIMED_OUT, XTCP_ABORTED or XTCP_CLOSED event is received then
the state associated with the connection can be freed up. This is done in the
httpd_free_state function:

void httpd_free_state(xtcp_connection_t *conn)
{

int i;

for (i = 0; i < NUM_HTTPD_CONNECTIONS; i++)
{

if (connection_states[i]. conn_id == conn ->id)
{

connection_states[i]. active = 0;
}

}
}

Receiving Data When an XTCP_RECV_DATA event occurs the httpd_recv function
is called. The first thing this function does is call the xtcp_recv() function to
place the received data in the data array. (Note that all TCP/IP clients must call
xtcp_recv() directly after receiving this kind of event).

void httpd_recv(chanend tcp_svr , xtcp_connection_t *conn)
{

struct httpd_state_t *hs = (struct httpd_state_t *) conn ->appstate;
char data[XTCP_CLIENT_BUF_SIZE];
int len;

// Receive the data from the TCP stack
len = xtcp_recv(tcp_svr , data);

XM002033A

Ethernet Slice Simple Webserver Application Quickstart 10/12

The hs variable points to the connection state. This was recovered from the
appstate member of the connection structure which was previously associated
with application state when the connection was set up. As a safety check we only
proceed if this state has been set up and the hs variable is non-null.

if (hs == NULL || hs->dptr != NULL)
{

return;
}

Now the connection state is known and the incoming data buffer filled. To keep
things simple, this server makes the assumption that a single tcp packet gives
us enough information to parse the http request. However, many applications
will need to concatenate each tcp packet to a different buffer and handle data
after several tcp packets have come in. The next step in the code is to call the
parse_http_request function:

parse_http_request(hs , &data[0], len);

This function examines the incoming packet and checks if it is a GET request. If so,
then it always serves the same page. We signal that a page is ready to the callee by
setting the data pointer (dptr) and data length (dlen) members of the connection
state.

void parse_http_request(httpd_state_t *hs , char *data , int len)
{

// Return if we have data already
if (hs->dptr != NULL)

{
return;

}

// Test if we received a HTTP GET request
if (strncmp(data , "GET ", 4) == 0)

{
// Assign the default page character array as the data to send
hs->dptr = &page [0];
hs->dlen = strlen (&page [0]);

}
else

{
// We did not receive a get request , so do nothing

}
}

The final part of the receive handler checks if the parse_http_request function set
the dptr data pointer. If so, then it signals to the tcp/ip server that we wish to
send some data on this connection. The actual sending of data is handled when an
XTCP_REQUEST_DATA event is signalled by the tcp/ip server.

XM002033A

Ethernet Slice Simple Webserver Application Quickstart 11/12

if (hs->dptr != NULL)
{

// Initate a send request with the TCP stack.
// It will then reply with event XTCP_REQUEST_DATA
// when it's ready to send
xtcp_init_send(tcp_svr , conn);

}

Sending Data To send data the connection state keeps track of three variables:

Name Description

dptr A pointer to the next piece of data to send

dlen The amount of data left to send

prev_dptr The previous value of dptr before the last send

We keep the previous value of dptr in case the tcp/ip server asks for a resend.

On receiving an XTCP_REQUEST_DATA, XTCP_SENT_DATA or XTCP_RESEND_DATA event
the function httpd_send is called.

The first thing the function does is check whether we have been asked to resend
data. In this case it sends the previous amount of data using the prev_dptr pointer.

if (conn ->event == XTCP_RESEND_DATA) {
xtcp_send(tcp_svr , hs ->prev_dptr , (hs->dptr - hs ->prev_dptr));
return;

}

If the request is for the next piece of data, then the function first checks that we
have data left to send. If not, the function xtcp_complete_send() is called to finish
the send transaction and then the connection is closed down with xtcp_close()
(since HTTP only does one transfer per connection).

if (hs->dlen == 0 || hs ->dptr == NULL)
{

// Terminates the send process
xtcp_complete_send(tcp_svr);
// Close the connection
xtcp_close(tcp_svr , conn);

}

If we have data to send, then first the amount of data to send is calculated. This
is based on the amount of data we have left (hs->dlen) and the maximum we
can send (conn->mss). Having calculated this length, the data is sent using the
xtcp_send() function.

XM002033A

Ethernet Slice Simple Webserver Application Quickstart 12/12

Once the data is sent, all that is left to do is update the dptr, dlen and prev_dptr
variables in the connection state.

else {
int len = hs ->dlen;

if (len > conn ->mss)
len = conn ->mss;

xtcp_send(tcp_svr , hs ->dptr , len);

hs ->prev_dptr = hs ->dptr;
hs ->dptr += len;
hs ->dlen -= len;

}

Copyright © 2014, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

XM002033A

	Hardware setup
	Import and build the application
	Run the application
	Troubleshooting
	Next steps

