
DSP on xCORE Multicore Microcontrollers for Embed-
ded Developers

Document Number: X7402A

Publication Date: 2016/2/19

XMOS © 2016, All Rights Reserved.

DSP on xCORE Multicore Microcontrollers for Embedded Developers 2/15

SYNOPSIS

This documents provides an introduction to the Data Signal Processing (DSP) operations available to
embedded engineers who want to write application programs for xCORE multicore microcontrollers.
xCORE devices are general purpose processors rather than a specialised DSP devices, but they
includes a number of instructions that speed up common DSP operations. These can be run on
the eight concurrent logical cores available in each xCORE Tile, along with specialized I/O and
timing instructions.

X7402A

DSP on xCORE Multicore Microcontrollers for Embedded Developers 3/15

Table of Contents

1 Data types 4
1.1 Machine representation . 4
1.2 High level language representation . 4

2 Operations 6
2.1 Word arithmetic . 6
2.2 Multi word arithmetic . 6
2.3 Multiply accumulate . 7
2.4 Fixed point arithmetic . 8

3 Fixed point algorithms 10
3.1 FIR example . 10
3.2 Biquad example . 12

4 Summary 15

X7402A

1 Data types

IN THIS CHAPTER

· Machine representation

· High level language representation

1.1 Machine representation

The xCORE-XS1 architecture supports a word as its basic data type. A word
comprises 32 bits that can be held in a register, load/stored in a single operation
into memory, or communicated between logical cores in a single operation over a
channel end. Most operations are 32-bit wide, but there are a few 64-bit operations.

The four most important data types for numeric operations are:

· signed 32-bit integer

· unsigned 32-bit integer

· signed 64-bit integer

· unsigned 64-bit integer

A signed 32-bit integer is represented as a 2’s complement word, a signed 64-bit
integer is stored as two words: a signed 32-bit value (the high word), and an
unsigned 32-bit value (the low word). Given the low and the high word, the 64-bit
signed value is:

high * 0x100000000 + low

An unsigned 64-bit number is stored using two unsigned 32-bit integers, high and
low. Fixed point types are represented using these four integer types, as will be
shown in §2.4.

1.2 High level language representation

In C and XC, the standard int and unsigned types refer to 32-bit signed and
unsigned values. 64-bit numbers can be declared as a single variable by declaring
it as a long long or unsigned long long. In the compiled code, these values will
occupy two registers or two memory words.

If desired, 64-bit values can be declared explicitly as two words, e.g.

int high; unsigned int low;

X7402A

DSP on xCORE Multicore Microcontrollers for Embedded Developers 5/15

will declare the two halves of a 64-bit number. Functions can return a pair of values,
e.g. {int,unsigned} or {unsigned,unsigned}.

Integer type XC, C

signed 32-bit int

unsigned 32-bit unsigned

signed 64-bit long long

unsigned 64-bit unsigned long long

Figure 1:

Summary

X7402A

2 Operations

IN THIS CHAPTER

· Word arithmetic

· Multi word arithmetic

· Multiply accumulate

· Fixed point arithmetic

The full set of operations is beyond the scope of this document, and can be found
in the XS1 Architecture Manual1.

2.1 Word arithmetic

All standard operations are supported with word operands. In these operations
only the least significant 32-bits of the result are stored, ignoring any overflow or
carry:

· ADD: adds two 32-bit numbers, works on signed and unsigned values

· SUB: subtracts two 32-bit numbers, works on signed and unsigned values

· NEG: negates a 32-bit signed number

· MUL: multiplies two 32-bit numbers, works on signed and unsigned values

· DIVU: divides two 32-bit unsigned numbers

· DIVS: divides two 32-bit signed numbers

· REMU: remainder of division of two 32-bit unsigned numbers

· REMS: remainder of division of two 32-bit signed numbers

The first four operations complete in a single logical core cycle, the latter four take
up to 32 logical core cycles to complete.

In C and XC these operations are denoted by +, -, *, / and %. Operations are signed,
unless both operands are unsigned in which case an unsigned result is produced.

2.2 Multi word arithmetic

Multi-word arithmetic provides instructions that facilitate long arithmetic on 32,
64, 96, or longer data sizes. The instructions perform the following operations:

1http://www.xmos.com/published/xs1_en?version=latest

X7402A

http://www.xmos.com/published/xs1_en?version=latest

DSP on xCORE Multicore Microcontrollers for Embedded Developers 7/15

· LADD: add three 32-bit numbers (notionally two source operands and a carry-
bit), resulting in a 64-bit number (notionally a 32-bit result and a carry-bit).
This instruction has five register operands: three source operands and two
destination operands.

· LSUB: subtract two 32-bit numbers from a third 32-bit number (notionally two
source operands and a borrow-bit), resulting in a 64-bit number (notionally a
32-bit result and a borrow-bit). This instruction has five register operands: three
source operands and two destination operands.

· LMUL: multiply two 32-bit unsigned numbers, and add two 32-bit values, result-
ing in a 64-bit number. Notionally, the inputs are two source operands to be
multiplied, and two carries for implementing a long multiplication as an array of
multiplications. This instruction has six register operands: four source operands
and two destination operands.

· LDIVU: Divide a 64 bit number by a 32-bit number, resulting in a 32-bit divider
and a 32-bit remainder. This instruction has five register operands: three source
operands and two destination operands. This operation is not a single cycle
operation, and takes up to 32 logical core cycles to complete.

These operations are used by the XC and C compilers when operating on the
long long and unsigned long long data type.

2.3 Multiply accumulate

The XS1 architecture has two instructions that are designed to efficiently implement
multiply-accumulate operations on signed and unsigned numbers. These opera-
tions perform a full precision 32x32 into 64 bits multiplication, and accumulate
into a 64-bit accumulator.

· MACCS: Multiply two signed 32-bit values to form a signed 64-bit answer, and
accumulate this 64-bit value into a 64-bit accumulator. This instruction has 4
register-operands: two source 32-bit values to be multiplied, and 2 registers
that are the accumulator.

· MACCU: Multiply two unsigned 32-bit values to form an unsigned 64-bit answer,
and accumulate this 64-bit value into a 64-bit accumulator. This instruction has
4 register-operands: two source 32-bit values to be multiplied, and 2 registers
that are the accumulator.

Any XC or C an expression x + (long long) y*z is mapped onto a multiply-
accumulate operation, provided that y and z are int, and x is a long long. Sim-
imlarly, x + (unsigned long long) y*z is mapped to an unsigned multiply accu-
mulate provided that y and z are unsigned int, and x is a unsigned long long.
Hence, the inner product over two vectors of length N can be written as:

X7402A

DSP on xCORE Multicore Microcontrollers for Embedded Developers 8/15

#define N 10

long long innerProduct(int x[N], int y[N]) {
long long hl = 0;
for(int i = 0; i < N; i++) {

hl += (long long) x[i]*y[i];
}
return hl;

}

2.4 Fixed point arithmetic

Fixed point arithmetic is implemented on top of signed arithmetic by the pro-
grammer defining the split between integral and fractional parts, and using long
arithmetic to produce a full result fixed point answer.

For example: multiplying a 16.16 signed fixed-point number (a number between
+32767.999985 and -32768) with a 8.24 signed fixed-point number (a number
between 127.99999994 and -128) results in a 64-bit answer that contains a 24.40
fixed-point value (a number between 8388608 and -8388608). The multiplica-
tion yields an exact result, no rounding or truncation are performed during the
operation.

If the input operands are known to have some headroom, then the result will also
have headroom. For example, If the second operands are only in the range +1 to
-1, then there are seven bits headroom, and a series of 128 multiply accumulate
operations can be performed before the result is no longer guaranteed to fit in the
64-bit word.

The programmer must decide:

· When to perform rounding, and how to round numbers. Rounding is imple-
mented by adding 1 or triangular noise below the lowest bit.

· When to reduce the number of bits, for example, reduce a 64-bit answer into a
32-bit number, or reduce 96 bits to 64 bits. At this stage, any bits occupying
the headroom typically indicate an overflow.

· When to check that there is no headroom available (overflow), and what to do.
For example, you may want to implement saturating arithmetic.

Rounding can be implemented in a variety of ways - depending on the type of
rounding required, and depending on the sequence of operations. Typically, if
there is a sequence of multiply-accumulate operations, the accumulator will be
initialised to 0.5 in the lowest bit, or some other value that averages out to 0.5.
Alternatively, 0.5 can be added after all operations are completed.

Reducing the number of bits involves shifting the data right. In C and XC we can
simply shift the 64-bit value using >>, and then cast it to an int. At machine
level, this involves shifting both words involved, and ORing the new value. This is
implemented using three standard bit-operations:

X7402A

DSP on xCORE Multicore Microcontrollers for Embedded Developers 9/15

· SHL: Shift a word of bits to the left, inserting zero bits on the right. When used
for reducing a fixed point number, then this operation is performed on the
more-significant word.

· SHR: Shift a word of bits to the right, inserting zero bits on the left. When
used for reducing a fixed point number, this operation is performed on the
less-significant word.

· OR: or two bit patterns. When used for a reducing a fixed point number, this
operation is performed on the result of the two shift operations.

Before shifting the value down, a test on overflow can be implemented
by simply comparing the value against the maximum allowed value, e.g.
if (accumulator > 0x007FFFFFFFFFFFFFL) will test if the accumulator has strayed
positively into the top 8 bits, and if (accumulator > 0xFF80000000000000L) will
test if the accumulator has strayed negatively into the top 8 bits. If both tests fail,
then the top 8 bits of the number can be chopped off safely.

signed word add, sub, mul, div, rem +, -, *, /, %
unsigned word add, sub, mul, div, rem +, -, *, /, %
multiply double word accumulate +=
test on overflow >, <
64 to 32-bit conversion >>

Figure 2:

Summary

X7402A

3 Fixed point algorithms

IN THIS CHAPTER

· FIR example

· Biquad example

This chapter shows how to implement two common DSP algorithms
on an xCORE multicore microcontroller: a FIR and a Biquad (complete
programs that perform cascaded biquads and FIRs can be found on
http://github.com/xcore/sc_dsp_filters/).

3.1 FIR example

In its most general form, a FIR is performed by multiplying two vectors of signed
numbers. One vector contains the sample data, and one vector contains the
FIR coefficients. In the example code below, we have assumed that we have 80
coefficients that are represented in a 16.16 format, and that the sample data is
represented in a 8.24 format. Coefficients are assumed to have values in the full
range [-32768..32767] whereas we know that samples are only values in the range
[-0.5..+0.5]. We want the result of the FIR as a sample value, represented in an
8.24 format. The code to perform this is:

#define N 80

int FIR(int samples[N], int coefficients[N]) {
long long acc;
acc = 0x8000L; // Rounding bit.
for(int i = 0; i < N; i++) {

acc += samples[i]* coefficients[i];
}
if (acc > 0x00007FFFFFFFFFFFL) { // Check pos overflow

return 0x7FFFFFFF; // Saturate
}
if (acc < 0xFFFF800000000000L) { // Check neg overflow

return 0x80000000; // Saturate
}
return (int)(acc >> 16); // Make result 8.24

}

Since all numbers in X only occupy 24 bits (the bottom 23 bits and a sign bit),
there are 8 bits headroom, and up to 256 products can be added together without
overflow. So we know we can safely multiply the two vectors.

After the multiplication, the resulting number is represented as a 24.40 number.
This needs to be made into a 8.24 number. The simplest operation that performs

X7402A

http://github.com/xcore/sc_dsp_filters/

DSP on xCORE Multicore Microcontrollers for Embedded Developers 11/15

this coercion is to shift the number to the right by 16 places, and cast it to an int.
That will truncate the bottom 16 bits (during the shift) and the top 16 bits (during
the cast to int). If we wanted to round the bottom bits to the nearest half, then we
should add 0x8000 prior to the shift.

If we wanted to implement saturating arithmetic, then rather than simply casting
the value to an int, we should first check whether the value is greater than
0x0000 7FFF FFFF FFFF or less than 0xFFFF 8000 0000 0000.

The function can be generalised to work on coefficients other than 16.16, and
sample data other than 8.24. In the code below, the constant FRAC defines the
number of bits in the fraction of each coefficient. The function returns the same
representation as it gets on the input samples, but assumes that there is sufficient
headroom to not overflow during the 80 additions, i.e. the total headroom in
coefficients and samples is at least 7 bits.

#define N 80
#define FRAC 16

int FIR(int samples[N], int coefficients[N]) {
long long acc;
acc = 1L << (FRAC -1); // Rounding bit.
for(int i = 0; i < N; i++) {

acc += samples[i]* coefficients[i];
}
if (acc > (0 x7FFFFFFFFFFFFFFFL >> (32-FRAC))) {

return 0x7FFFFFFF; // Saturate
}
if (acc < (0 x8000000000000000L >> (32-FRAC))) {

return 0x80000000; // Saturate
}
return (int)(acc >> FRAC); // shift result to be same

} // representation as samples []

If performance is paramount, then the test on overflow can be optimized. A test
of whether an overflow has occurred can be performed by simply testing whether
the top bits are all zero (in the case of unsigned numbers) or whether the top
bits are all identical (in the case of signed numbers). On an xCORE device this
operation can be performed by zero-extending or sign-extending the result and
testing whether this is the same as the result prior to zero/sign extension:

· ZEXT: zero extends a 32-bit value, from a specific bit upwards. When used as an
overflow test on an unsigned number, ZEXT should be a no-operation. ZEXT has
two operands, the input value and the bit-position to ZEXT from.

· SEXT: sign extends a 32-bit value, from a specific bit upwards. When used as an
overflow test on a signed number, SEXT should be a no-operation. SEXT has two
operands, the input value and the bit-position to SEXT from.

If this test indicates an overflow, then a saturated value can be returned. Otherwise
the number can be truncated safely:

X7402A

DSP on xCORE Multicore Microcontrollers for Embedded Developers 12/15

#include <xs1.h>

#define N 80

int FIR(int samples[N], int coefficients[N]) {
long long acc;
int ah;
acc = 0x8000; // Rounding bit.
for(int i = 0; i < N; i++) {

acc += samples[i]* coefficients[i];
}
ah = acc >> 32;
if (sext(ah, 16) != ah) { // Quickly test on overflow

if (ah < 0) { // Negative overflow
return 0x80000000 ;// Saturate MAXNEG

} else {
return 0x7FFFFFFF ;// Saturate MAXPOS

}
} else {

return acc >> 16;
}

}

3.2 Biquad example

The biquad is implemented assuming 8.24 input values, and 8.24 coefficients.
Coefficients and values do not need to use the same representation (in the case
of a biquad, coefficients could be represented as 4.28 values), and it is up to the
designer to chose precisions that suit the domain.

A general biquad operation performs:

y[n] = (b0*x[n] + b1*x[n-1] + b2*x[n-2] + a1*y[n-1] + a2*y[n-2])/a0

Where b0, b1, b2, a0, a1, and a2 are the biquad coefficients. Assuming that the
coefficients are constant, all constants are normally divided by a0, meaning that
the computation reduces to:

y[n] = B0*x[n] + B1*x[n-1] + B2*x[n-2] + A1*y[n-1] + A2*y[n-2]

You can implement this by using multiply-accumulate operations, with a 64 bit
accumulator that holds a 16.48 value, and then rounding and clamping the accu-
mulator into y[n]. Assuming that the samples span the full 8.24 range (i.e. from
+128..-128), and assuming that the coefficients are all in the range [-2..2] then:

· After the first multiply-accumulate the accumulator is in the range +256..-256,
requiring 57 bits

· After the second multiply-accumulate the accumulator is in the range +512..-512,
requiring 58 bits

X7402A

DSP on xCORE Multicore Microcontrollers for Embedded Developers 13/15

· After the third multiply-accumulate the accumulator is in the range +768..-768,
requiring 58 bits

· After the fourth multiply-accumulate the accumulator is in the range +1024..-
1024, requiring 59 bits

· After the fifth multiply-accumulate the accumulator is in the range +1280..-1280,
requiring 59 bits

Hence, no overflow can happen during the computation. If you wish, you could
extend the precision of the coefficients by 4 bits without having to worry about
overflow, i.e. representing them as 4.28 enabling higher precision results.

At the end of the sequence, there may be an overflow, which is normal - a biquad
on a signal in the range +128..-128 is not guaranteed to result in a signal in the
range +128..-128.

Alternatively it can be written in XC:

#include <xs1.h>

int xn, xn1 , xn2 , yn1 , yn2;
int B0, B1, B2, A1, A2;

int biquad(int xn) {
int ah, yn;
long long accumulator = 0x800000;
accumulator += (long long) xn * B0;
accumulator += (long long) xn1 * B1;
accumulator += (long long) xn2 * B2;
accumulator += (long long) yn1 * A1;
accumulator += (long long) yn2 * A2;
ah = accumulator >> 32;
if (sext(ah, 24) != ah) {

if (ah < 0) {
yn = 0x80000000;

} else {
yn = 0x7FFFFFFF;

}
} else {

yn = accumulator >> 24;
}
xn2 = xn1;
xn1 = xn;
yn2 = yn1;
yn1 = yn;
return yn;

}

Which translates to the following assembly:

X7402A

DSP on xCORE Multicore Microcontrollers for Embedded Developers 14/15

#define xn 0
#define xn1 1
#define xn2 2
#define yn1 3
#define yn2 4

biquad:
ldc r0 , 1
shl r0 , r0 , 24
ldc r1 , 0
ldw r2 , dp[B0]
ldw r3 , sp[xn]
maccs r0 , r1 , r2, r3
ldw r2 , dp[B1]
ldw r3 , sp[xn1]
maccs r0 , r1 , r2, r3
ldw r2 , dp[B3]
ldw r3 , sp[xn2]
maccs r0 , r1 , r2, r3
ldw r2 , dp[A1]
ldw r3 , sp[yn1]
maccs r0 , r1 , r2, r3
ldw r2 , dp[A2]
ldw r3 , sp[yn2]
maccs r0 , r1 , r2, r3
or r11 , r0, r0
sext r11 , 24
eq r10 , r11 , r0
bt r10 , selectBits
shr r10 , r10 , 24
bt r10 , useMinInt
ldw r0 , cp[MAXINT]
bu done

useMinInt:
ldw r0 , cp[MININT]
bu done

selectBits:
shl r0 , r0 , 8
shr r1 , r1 , 24
or r0 , r0 , r1

done:

X7402A

DSP on xCORE Multicore Microcontrollers for Embedded Developers 15/15

4 Summary

Numeric instructions in the xCORE XS1 architecture work on values stored in one or
two 32-bit words representing signed or unsigned, 32- or 64-bit numbers. These
values can be interpreted as fixed point values if you require.

· Single cycle operations perform (long) multiplications and multiply-accumulate.

· The xCORE architecture performs full precision multiply-accumulate operations.

· The programmer inserts rounding and saturation where required.

· Operations are provided to construct multi-word arithmetic, e.g. 96-bit opera-
tions for fixed-point, or 1024 bit multiplications for cryptographic applications.

Copyright © 2016, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

XMOS and the XMOS logo are registered trademarks of Xmos Ltd. in the United Kingdom and other countries,
and may not be used without written permission. All other trademarks are property of their respective owners.
Where those designations appear in this book, and XMOS was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

X7402A

	Data types
	Machine representation
	High level language representation

	Operations
	Word arithmetic
	Multi word arithmetic
	Multiply accumulate
	Fixed point arithmetic

	Fixed point algorithms
	FIR example
	Biquad example

	Summary

