
AN10027 (1.0.0)

Application Note: AN10027

How to communicate between tasks with
interfaces
This application note is a short how-to on programming/using the xTIMEcomposer tools. It shows how to
communicate between tasks with interfaces.

Required tools and libraries

This application note is based on the following components:

• xTIMEcomposer Tools - Version 14.0.0

Required hardware

Programming how-tos are generally not specific to any particular hardware and can usually run on all
XMOS devices. See the contents of the note for full details.

Copyright 2015 XMOS Ltd. 1 www.xmos.com
XM007423



AN10027 (1.0.0)

1 How to communicate between tasks with interfaces

Interfaces provide the most structured and flexible method of inter-task communication. An interface
defines the kind of transactions that can occur between the tasks and the data that is passed with them.
For example, the following interface declaration defines two transaction types:

interface my_interface {
void fA(int x, int y);
void fB(float x);

};

The types of transactions are defined like C functions. Interface functions can take the same arguments
that any C function can. The arguments define what data is sent when the transaction between the tasks
occurs. If an array argument is given for an intra-tile communication, the array is not copied but the
compiler will optimize it to just pass a reference to the array, allowing the recipient to access the array in
memory.

Communication is done over asymmetric connections obeying an interface protocol. One end of the
connection is declared as the client end and initiates transactions, and one end is the server end which
responds to transactions. Once both sides enter the transaction, data can flow in both directions.

To initiate transactions, a task can take an argument which is the client end of an interface connection
and use that variable to call a function over the interface:

void task1(interface my_interface client c)
{
// c is the client end of the connection,
// let's communicate with the other end.
c.fA(5, 10);

}

Code can wait for transactions at the server end with the select construct. A select waits until a
transaction is initiated by the other side:

void task2(interface my_interface server c)
{
// wait for either fA or fB over connection c.
select {
case c.fA(int x, int y):
printf("Received fA: %d, %d\n", x, y);
break;

case c.fB(float x):
// handle the message
printf("Received fB: %f\n", x);
break;

}
}

Note how the select lets you handle several different types of message. The language extension also
lets the compiler allocate local variables for the incoming data that the message handler can access.

Code can wait for many different types of transaction (using different interface types) from many different
sources. Once one of the transactions has been initiated and the select has handled the event, the code
will continue on.

When tasks are run, you can join them together by declaring an instance of an interface and passing it as
an argument to both tasks:

Copyright 2015 XMOS Ltd. 2 www.xmos.com
XM007423



AN10027 (1.0.0)

int main(void)
{
interface my_interface c;
par {
task1(c);
task2(c);

}
return 0;

}

The types of the functions tell the tools which end is the server and which is the client. The compiler also
checks that each connection gets exactly one server and one client end.

Copyright © 2015, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2015 XMOS Ltd. 3 www.xmos.com
XM007423


	How to communicate between tasks with interfaces
	How to communicate between tasks with interfaces

