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Application Note: AN10007

How to define and use a combinable func-
tion
This application note is a short how-to on programming/using the xTIMEcomposer tools. It shows how to
define and use a combinable function.

Required tools and libraries

This application note is based on the following components:

• xTIMEcomposer Tools - Version 14.0.0

Required hardware

Programming how-tos are generally not specific to any particular hardware and can usually run on all
XMOS devices. See the contents of the note for full details.
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1 How to define and use a combinable function

Combinable functions represent tasks that can be combined to run on a single logical core.

If a tasks ends in an never-ending loop containing a select statement, it represents a task that continually
reacts to events:

void task1(args) {
.. initialization ...
while (1) {
select {
case ... :
break;

case ... :
break;

...
}

}
}

These kind of tasks can be marked as combinable by adding a special attribute:

[[combinable]]
void counter_task(char *taskId, int n) {
int count = 0;
timer tmr;
unsigned time;
tmr :> time;
// This task perfoms a timed count a certain number of times, then exits
while (1) {
select {
case tmr when timerafter(time) :> int now:
printf("Counter tick at time %x on task %s\n", now, taskId);
count++;
if (count > n)
return;

time += 1000;
break;

}
}

}

A combinable function must obey the following restrictions:

• The function must have void return type.
• The last statement of the function must be a while(1)-select statement.

Several combinable functions can be run in parallel with a combined par. This will run them on the same
logical core using co-operative multitasking:

int main() {
[[combine]]
par {
counter_task("task1", 5);
counter_task("task2", 2);

}
return 0;

}
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When tasks are combined the compiler creates code that first runs the initial sequence from each function
(in an unspecified order) and then enters a main loop. This loop enables the cases from the main selects
of each task and waits for one of the events to occur. When the event occurs, a function is called to
implement the body of that case from the task in question before returning to the main loop.

You cannot use the [[combine]] attribute directly in a par with tile placements but can nest par state-
ments:

int main(void) {
par {
on tile[0]: task1( ... );
on tile[1]: task2( ... );
on tile[1]:
[[combine]]
par {
task3( ... );
task4( ... );

}
}
return 0;

}

The above program will run task1 on a logical core on tile[0] and task2 on its own logical core
on tile[1]. A further logical core on tile[1] will run both task3 and task4 by using co-operative
multitasking.
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