
AN02014: Integrating DSP into the XMOS USB reference design

AN02014: Integrating DSP into the XMOS USB reference design

Publication Date: 2025/4/28
Document Number: XM-015104-AN v2.0.0

IN THIS DOCUMENT

1 Introduction . 1
2 Getting Started . 1
3 Application Overview . 3
4 Implementing UserBufferManagement . 4
5 Generating the DSP pipeline . 5
6 References . 6
7 Support . 6

1 Introduction

Note: Some software components in this tool flow are prototypes and will be updated
in Version 2 of the library. The underlying Digital Signal Processing (DSP) blocks are
however fully functional. Future updates will enhance the features and flexibility of the
design tool.

This application note explains how to integrate custom DSP into the XMOS USB
Audio Reference Design (sw_usb_audio) by utilising the XMOS Audio DSP solution
(lib_audio_dsp). An application showcasing this integration accompanies this document
and the steps taken to create that application are described below.

The XMOS audio DSP solution offers a low-code approach to designing custom audio
DSP through aPython library, which generates amultithreaded, pipelinedDSPprocess for
the xcore. The XMOS USB Audio Reference Design serves as a highly configurable audio
IO platform. By following the process outlined in this document, it is possible to create
highly specific audio DSP applications with less than 100 lines of additional embedded
source code.

Both of the repositories discussed above contain detailed documentation on their use
which should be consulted when modifying this application to any specific product. The
scope of this note is limited to a single configuration of the XMOS USB Audio Reference
Design and a simple DSP pipeline. It explains the steps required to add DSP to any con-
figuration of the XMOS USB Audio Reference Design.

This app note is part one of two that discusses adding DSP to a USB application. Part
two, AN02015, covers adding run-time control and includes DSP pipeline that showcases
more of the DSP library’s features.

2 Getting Started

2.1 Requirements

Before running this application note ensure the following applications are installed on
your system:

· XTC 15.3.1

1

https://www.xmos.com/develop/usb-multichannel-audio/#technical-documents
https://github.com/xmos/lib_audio_dsp
https://www.xmos.com/software-tools/

AN02014: Integrating DSP into the XMOS USB reference design

· CMake >= 3.21.0

· Python 3.12

· Graphviz, ensuring the dot executable available on your PATH.

The following hardware is required:

· XK-AUDIO-316-MC-AB

· 2 Micro-USB cables

· Optional, 1 to 4 3.5 mm stereo audio cables.

2.2 Running the example

First, connect the XK-AUDIO-316-MC-AB to your computer with both the “DEBUG” and
“USB DEVICE” Micro-USB ports as shown in Fig. 1.

Fig. 1: XK-AUDIO-316-MC-AB with USB cables and 3.5 mm jack cables connected.

Once connected follow these steps:

1. Open a terminal and activate the XTC enviroment. Optionally, create a Python virtual
environment and activate it.

2. Get the source code for this app note from https://www.xmos.com/
application-notes/

3. Navigate to the root directory of this app note and install the Python requirements:

pip install -Ur requirements.txt

for users in China, a pip mirror will give faster downloads
pip install -Ur requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

4. Start the Jupyter notebook from the app_an02014 directory. Jupyter Notebook is
an interactive Python editor which was installed via the pip command in the previous
step.

cd app_an02014
jupyter notebook

2

https://cmake.org/download/
https://www.python.org/
https://graphviz.org/download/
https://www.xmos.com/xk-audio-316-mc-ab
https://www.xmos.com/xk-audio-316-mc-ab
https://www.xmos.com/software-tools/
https://docs.python.org/3/library/venv.html#venv-def
https://docs.python.org/3/library/venv.html#venv-def
https://www.xmos.com/application-notes/
https://www.xmos.com/application-notes/
https://www.python.org/
https://jupyter.org/
https://jupyter.org/

AN02014: Integrating DSP into the XMOS USB reference design

5. If this does not automatically open a browser window, then copy the url from the
output of jupyter that startswith http://127.0.0.1 and navigate to it in yourweb browser.

6. Open dsp.ipynb on the web interface by double clicking on the file name.

7. Execute all the cells in the notebook by selecting “Run all cells” from the “Run” menu.

This final step will display a diagram that represents the provided simple DSP pipeline.
It will then generate the xcore source code, build the 8-channel application, and run it on
the connected device. The device will appear on the connected computer as an 8-input,
8-output USB audio device named “XMOS xCORE.ai MC (UAC2.0)”. The provided DSP
design simply reduces the input signal by 6 dB in both directions. When audio is played
through the USB device, the signal will be processed by the DSP and then output through
the 3.5 mm jacks on the board.

The DSP pipeline in dsp.ipynb provides a template that can be adapted to other needs
and can form the base for the user’s own specific application requirements. The note-
book can be updated and rerun to try different designs and iterate rapidly to find the best
solution.

3 Application Overview

The XMOS USB Audio 2.0 Reference Design, sw_usb_audio, offers a versatile infrastruc-
ture for transmitting audio between various audio interfaces, including USB, I2S, ADAT,
and SPDIF. It’s highly adaptable, supporting diverse combinations of input and output in-
terfaces. Although the given configurations will transfer audio between interfaces with-
out modification (excluding its built-in mixer module), it does offer callback hooks for
application code to intercept the data flow. The pertinent callback, UserBufferManage-
ment, is invoked once per sample period with the most recent data from each interface.

The core functionality of sw_usb_audio is provided by lib_xua; this is also the case for
the application associated with this note. lib_xua provides the ability to configure which
features are enabled and which tiles different features run on. The ports available in
the end product will significantly effect the choice of tile for each feature. Consult the
sw_usb_audio documents for more details. For this example application the chosen val-
ues for XUD_TILE and AUDIO_IO_TILE are 0 and 1 respectively. This leads to the software
structure shown in Fig. 2.

Fig. 2: System thread diagram

The UserBufferManagement callback is executed on the audiohub thread on tile 1. This
is the only thread in use on that tile, so there are 7 threads left for new functionality. It is

3

https://www.xmos.com/develop/usb-multichannel-audio/#technical-documents
https://github.com/xmos/lib_xua
https://github.com/xmos/lib_xua
https://www.xmos.com/develop/usb-multichannel-audio/#technical-documents

AN02014: Integrating DSP into the XMOS USB reference design

important to understand the thread usage of the tile that will execute the DSP in order to
know how many threads of DSP the pipeline design may use.

To reduce the complexity of this application, there is one provided build configuration
and support for a single board. This has facilitated the removal of most files present in
sw_usb_audio. However, the correlation between the remaining source files and those
found in sw_usb_audio should be evident. All changes discussed in this document can
also be applied to a full sw_usb_audio based design to integrate the generated pipeline.

This application has been configured to operate at a single sample rate of 48 kHz (using
lib_xua configuration macros). The DSP pipeline must be designed for a fixed sample
rate to allow tuning parameters to be determined. lib_audio_dsp supports rates other
than 48 kHz, but the rate set when designing the DSP must align with the rate set for the
rest of the application to get the expected performance.

4 Implementing UserBufferManagement

This application note includes amodified version of the UserBufferManagement function
normally found in sw_usb_audio. It has the following prototype:
void UserBufferManagement(unsigned* sampsFromUsbToAudio, unsigned* sampsFromAudioToUsb);

The two arguments contain the input samples and must be filled with the output sam-
ples. The first argument takes channels from the USB host as an input and outputs to
the other interfaces. The second argument outputs to the USB host and takes channels
from the other audio interfaces as an input.

To pass audio through the DSP pipeline two functions must be called. These are defined
in adsp_pipeline.h from lib_audio_dsp:
static inline void adsp_pipeline_source(adsp_pipeline_t *adsp, int32_t **data);
static inline void adsp_pipeline_sink(adsp_pipeline_t *adsp, int32_t **data);

The first passes samples to the pipeline, and the second reads processed samples from
the pipeline. Both of these use chanends storedwithin an instance of adsp_pipeline_t that
must be initialised by functions from the generated pipeline. Both adsp_pipeline_source
and adsp_pipeline_sink block on a chanend until the DSP threads are available to process
the sample exchange. This can lead to issues if the generated DSP cannot meet the real
time requirements of the system.

The data parameter expects an array containing frames of samples for each input and
output channel. For this application the frame size will be 1; therefore, we can construct
both data parameters by initialising a new array of pointers that reference the correct
elements in sampsFromUsbToAudio and sampsFromAudioToUsb. Fig. 3 shows how the
dsp_input and dsp_output arrays are constructed in this application.

It is important to note that the size of sampsFromUsbToAudio and sampsFromAu-
dioToUsb depend on the application configuration of lib_xua. In this application there
are 8 USB OUT channels and 8 ADC channels, totalling 16 DSP inputs. There are also
8 USB IN channels and 8 DAC channels, totalling 16 channels of DSP outputs. The pro-
vided application will adapt to different I2S and USB configurations but will need updating
when other lib_xua interfaces are enabled.

It is also important to note that the channel indices in dsp_input and dsp_output will be
used later when defining the DSP pipeline.

Once constructed, the dsp_input can be passed into the “adsp_pipeline_source” func-
tion, and the dsp_output can be passed to the “adsp_pipeline_sink” function. An ex-
ample implementation of UserBufferManagement can be found in app_dsp.c from the
application provided with this note. This includes an example UserBufferManagement
for frame sizes greater than 1, where additional buffering is required before calling
“adsp_pipeline_source” and “adsp_pipeline_sink”.

4

https://www.xmos.com/develop/usb-multichannel-audio/#technical-documents
https://www.xmos.com/develop/usb-multichannel-audio/#technical-documents
https://www.xmos.com/develop/usb-multichannel-audio/#technical-documents
https://github.com/xmos/lib_xua
https://github.com/xmos/lib_audio_dsp
https://www.xmos.com/develop/usb-multichannel-audio/#technical-documents
https://github.com/xmos/lib_audio_dsp
https://github.com/xmos/lib_xua
https://github.com/xmos/lib_xua

AN02014: Integrating DSP into the XMOS USB reference design

Fig. 3: Mapping the DSP input/output arrays to the UserBufferManagement arguments

5 Generating the DSP pipeline

Adding DSP to the project requires an initial DSP design, which is best done in a Jupyter
notebook. This requires Python and some Python packages, which the application spec-
ifies in requirements.txt. This application’s source directory contains the notebook used
at app_an02014/dsp.ipynb. The Jupyter documentation covers the details of creating,
modifying, and executing a Jupyter notebook.

Upon opening dsp.ipynb, you will find a simple DSP design that processes the 16 pipeline
inputs. The design of a DSP pipeline is covered thoroughly in the user guide associated
with lib_audio_dsp. The indices of the pipeline inputsmatch the indices of the channels in
the dsp_input array discussed in the Implementing UserBufferManagement. The outputs
of the pipeline, set when pipeline.set_outputs() is called, have indices that align with the
dsp_output array.

After defining the DSP pipeline the notebook will proceed to generate the xcore source
code:
generate_dsp_main(pipeline, out_dir="src/generated_dsp")

This function takes the pipeline and generates the source code in the provided out_dir,
relative to the parent folder of dsp.ipynb. Consequently, this action creates the following
files:
app_an02014/src/generated_dsp
��� adsp_generated_auto.c
��� adsp_generated_auto.h
��� adsp_instance_id_auto.h

To include these files in the build, the CMakeLists.txt has been updated. No change was
required to add the C files as XCommon CMake will automatically find them. In order
for the application to include the header files, APP_INCLUDES has been appended with
src/generated_dsp (see app_an02014/CMakelists.txt for this change).

5

https://jupyter.org/
https://www.python.org/
https://www.python.org/
https://jupyter-notebook.readthedocs.io/en/latest/notebook.html
https://jupyter.org/
https://github.com/xmos/lib_audio_dsp
https://github.com/xmos/xcommon_cmake/releases/download/v1.2.0/xcommon_cmake.pdf

AN02014: Integrating DSP into the XMOS USB reference design

With the generated files included in the build it is possible to start the DSP threads in the
application. The following function is defined in app_dsp.c and called in user_main.h on
tile 1.
void dsp_thread(void) {

// Initialise the DSP instance and enter the generated DSP main function.
// This will never return.
m_dsp = adsp_auto_pipeline_init();
adsp_auto_pipeline_main(m_dsp);

}

With these changes, the application can be run on the board. The supplied Jupyter note-
book will automatically do this as the final step of execution.

The custom DSP application is now ready for the development of a more complex DSP
pipeline, such as the example described in AN02015.

6 References

· sw_usb_audio

· lib_audio_dsp

· lib_xua

· XTC

· XK-AUDIO-316-MC-AB

· XCommon CMake

· Jupyter

· Graphviz

7 Support

For all support issues please visit http://www.xmos.com/support

Copyright © 2025, All Rights Reserved.

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the ”Information”) and is providing
it to you ”AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS
Ltd makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United Kingdom and
other countries and may not be used without written permission. Company and product names mentioned in this
document are the trademarks or registered trademarks of their respective owners.

6

https://jupyter.org/
https://www.xmos.com/develop/usb-multichannel-audio/#technical-documents
https://github.com/xmos/lib_audio_dsp
https://github.com/xmos/lib_xua
https://www.xmos.com/software-tools/
https://www.xmos.com/xk-audio-316-mc-ab
https://github.com/xmos/xcommon_cmake/releases/download/v1.2.0/xcommon_cmake.pdf
https://jupyter.org/
https://graphviz.org/download/
http://www.xmos.com/support

	Introduction
	Getting Started
	Application Overview
	Implementing UserBufferManagement
	Generating the DSP pipeline
	References
	Support

