ANO00127: USB Video Class Device

2 MOS

ANQ0OQ127: USB Video Class Device

Publication Date: 2025/4/23
Document Number: XM-007149-AN v3.0.0

IN THIS DOCUMENT

1 Introduction 1
2 Overview 1
3 USB Video Class applicationnote 2
4 Furtherreading 21

1 Introduction

This application note shows how to create a USB device compliant to the standard USB
Video Class (UVC) on an xCORE device.

The code associated with this application note provides an example of using the XMOS
USB Device Library (lib_xud) and associated USB class descriptors to provide a frame-
work for the creation of USB video devices like webcam, video player, camcorders etc.

This example USB video class implementation provides a video camera device running
over high speed USB. It supports standard requests associated with the class. The ap-
plication doesn't connect a camera sensor device but emulates it by creating simple
video data which is streamed to the host PC. Any host software that supports viewing
UVC compliant video capture devices can be used to view the video streamed out of the
XMQOS device. This demonstrates the simple way in which USB video devices can easily
be deployed using an xCORE-USB device.

Note: This application note provides a standard USB video class device and as a result
does not require external drivers to run on Windows, macOS or Linux.

This application note is designed to run on XMOS xcore-200 or xcore.ai series devices.

The example code provided with the application has been implemented and tested on
the XK-EVK-XU316 board but there is no dependency on this board and it can be modified
to run on any development board which uses an xcore-200 or xcore.ai series device.

» This document assumes familiarity with the XMOS xcore architecture, the Universal
Serial Bus 2.0 Specification and related specifications, the XMOS tool chain and the
xC language. Documentation related to these aspects which are not specific to this
application note are linked to in Further reading.

» For the full API listing of the XMOS USB Device (XUD) Library please see the document
XMOS USB Device (XUD) Library'.

2 Overview

USB Video Class (UVC) is a standard class specification that standardizes video stream-
ing functionality on the USB. It enables devices like webcams, digital camcorders, analog

T https://www.xmos.com/file/lib_xud

https://www.xmos.com/file/lib_xud
https://www.xmos.com/file/lib_xud

ANO00127: USB Video Class Device

video converters, analog and digital television tuners etc to connect seamlessly with host
machines.

UVC supports streaming multiple video formats including YUV, MJPEG, MPEG-2 TS,
H.264, DV etc. It provides structures for describing the functionalities of the video de-
vice to the host and defines USB requests to control different parameters of the device
and characteristics of the video stream. It also provides flexibility for a video device to
support multiple video resolutions, formats and frame rates, which highly influence the
bandwidth negotiation between the device and the host.

Many OS platforms have native support for UVC drivers which greatly reduces the time
required for developers to create USB video devices.

This application note provides a detailed explanation of the UVC implementation for the
xcore device, enabling developers to build their own USB video devices. The demo ex-
ample doesn't interface a camera sensor but can be easily extended to add a camera.

The standard USB Video Class specification can be found on the USB-IF website.

Note: This application note addresses v1.1 of the specification

(https://www.usb.org/document-library/video-class-v11-document-set)

2.1 Block diagram

Fig. T shows the block diagram of USB video class application

XMOS
USB Video Device

Fig. 1: Block diagram of USB video class application

The ‘Camera Sensor’ shown in the above figure is not interfaced in the demo example
but it is emulated by creating color video frames inside the device.

3 USB Video Class application note

The example in this application note uses the XMOS USB device library (/ib_xud) and
shows a simple program that enumerates a USB Video Class device in a host machine
and streams uncompressed video frames in YUV format with thirty frames per second
to a video capture host software.

For this USB Video device application example, the system comprises three tasks run-
ning on separate threads of an xcore device.

The tasks perform the following operations:
» A task containing the USB library functionality to communicate over USB.

https://www.usb.org/document-library/video-class-v11-document-set

ANO00127: USB Video Class Device

» Ataskimplementing Endpoint 0 responding to both standard and video class-specific
USB requests.

» A task implementing the application code to send video data over streaming end-
points.

These tasks communicate via the use of xCONNECT channels which allow data to be
passed between application code running on separate logical cores.

Fig. 2 shows the task and communication structure for this USB video class application
example.

Fig. 2: Task diagram of the USB video device example

ANO00127: USB Video Class Device

3.1 CMakelists.txt additions for this application

To start using the USB library, you need to add 1ib_xud to your CMakeLists.txt:

set (APP_DEPENDENT_MODULES "1lib_xud")

You can then access the USB functions in your source code via the xud_device.h
header file:

#include "xud_device.h"

3.2 Source code files

The example application consists of multiple source code files and the following list pro-
vides an overview of how the source code is organised.

» usb_video.xc, usb_video.h - Contains the USB video class descriptors and end-
point handler tasks (functions).

» uvc_req.c, uvc_req.h - Contains functions and data structures to handle class-
specific USB requests.

» uvc_defs.h - This header file has defines that are used for USB descriptors, class-
specific requests and video details like resolution, payload size and frame rate etc.

» main.xc - Contains main () function and some USB related defines.

3.3 Setting up the USB components

main.xc has some arrays in it that are used to configure the endpoints for the the XMOS
USB device library. These are displayed below.
/* Endpoint count defines #/

#define EP_COUNT_OUT 1 // 1 OUT EP@
#define EP_COUNT_IN 3 // (1 IN EP@ + 1 INTERRUPT IN EP + 1 ISO IN EP)

/% Endpoint type tables - informs XUD what the transfer types for each Endpoint in use and also

* if the endpoint wishes to be informed of USB bus resets

*/

XUD_EpType epTypeTableOut[EP_COUNT_OUT] = {XUD_EPTYPE_CTL | XUD_STATUS_ENABLE};

XUD_EpType epTypeTableIn[EP_COUNT_IN] = {XUD_EPTYPE_CTL | XUD_STATUS_ENABLE, XUD_EPTYPE_INT, XUD_EPTYPE_ISO};

The tables above describe the endpoint configurations for this device. This example has
bi-directional communication with the host machine via the standard endpoint 0 and two
other IN endpoints for implementing the part of our video class.

These tables are passed to the function for the USB library which is called frommain().

ANO00127: USB Video Class Device

3.4 The application main() function

Below is the source code for the main function of this application, which is taken from
the source file main. xc

int main() {
chan c_ep_out[EP_COUNT_OUT], c_ep_in[EP_COUNT_IN];

/% 'Par' statement to run the following tasks in parallel */
par
{
on USB_TILE: XUD_Main(c_ep_out, EP_COUNT_OUT, c_ep_in, EP_COUNT_IN,
null, epTypeTableOut, epTypeTableIn
XUD_SPEED_HS, XUD_PWR_BUS);

on USB_TILE: Endpoint®(c_ep_out[@8], c_ep_in[@]);
on USB_TILE: VideoEndpointsHandler(c_ep_in[1], c_ep_in[2]);
return 0;

¥

Looking at this in more detail, the following can be observed:
The par statement starts three separate tasks in parallel.

There is a task to configure and execute the USB library: XUD_Main(). This library
call runs in an infinite loop and handles all the underlying USB communications and
provides abstraction at the endpoints level.

There is a task to start and run the Endpoint 0 code: Endpoint®(). It handles the
control endpoint zero and must be run in a separate logical core in order to provide
timely response to control requests from the host.

There is a task to handle two other endpoints required for the Video class:
VideoEndpointsHandler (). This function handles one Isochronous IN endpoint
for video streaming and one interrupt IN endpoint for sending notifications to host.

The define USB_TILE describes the tile on which the individual tasks will run.

In this example all tasks run on the same tile as the USB PHY although this is only a
requirement of XUD_Main().

The XxCONNECT communication channels used for inter-task communication are
setup at the beginning of main() and passed on to respective tasks.

The USB defines discussed earlier are passed into the function XUD_Main().

3.5 Configuring the USB device ID

The USB ID values used for vendor ID, product ID and device version number are defined
inthe file uve_defs.h. These are used by the host machine to determine the vendor of
the device (in this case XMOS) and the product plus the firmware version.

/# USB Video device product defines */

#define BCD_DEVICE 0x0100

#define VENDOR_ID ©x20B1
#define PRODUCT_ID @x1DE@

3.6 Video device topology

This section provides a brief overview of the representation of video device in a topology.
It introduces the terms used in the video class specification, which help the reader to
understand the further sections of this application note.

A video device is represented as an interconnection of multiple addressable entities.
Each entity represents a functionality and has properties which are controlled by the USB
host. The following are the different entities:

Units

ANO00127: USB Video Class Device

Selector Unit

Processing Unit
Extension Unit

Terminals
Input Terminal
Output Terminal
Special Terminals (extends the 1/0 terminal)

Media Transport Terminal
amera Terrinal

These entities are interconnected by means of Input Pins and Output Pins. A Unit has
one or more Input Pins and a single Output Pin, where each Pin represents logical data
streams inside the video device. A Terminal has either a single Input Pin or a single Output
Pin. An Input Terminal(IT) represents a starting point for data streams of the video device.
An Output Terminal(OT) represents an ending point for data streams.

The functionality of a Unit or Terminal is further described through Video Controls. A
Control typically provides access to a specific video property. Video properties include
brightness, contrast, sharpness, digital zoom etc. Each Control has a set of attributes
that can be manipulated or that provide additional information, they are:

Current setting
Minimum setting
Maximum setting
Resolution

Size

Default

For example, the brightness of the video stream can be controlled by the USB host by
changing the current setting of the Brightness Control inside a Processing unit.

Fig. 3 shows the topology of the demo application

Video Device

Inputfterrninal Output Eterminal

[
amera T ‘e UsB IN
Sensor S Endpoint
Qutput pin Input Pin

Fig. 3: Topology of the UVC example

No Units are involved in the demo application example. More information on Units can
be found from the USB video class specification documents.

This video device topology is communicated to the host through USB descriptors which
is discussed in the following section.

ANO00127: USB Video Class Device

3.7 USB Descriptors

USB Video class device has to support class-specific descriptors apart from the stan-
dard descriptors defined in the USB specifications. The class specific descriptors are
customised according to the need of the USB Video device.

Fig. 4 shows the descriptors used in the example code.

=
e

- - Standard descriptor
- - Class-specific descriptor

Fig. 4: Hierarchical structure of USB descriptors of UVC example

i

The above figure is discussed in detail in the following sections.

ANO00127: USB Video Class Device

USB Device Descriptor

usb_video. xc is where the standard USB device descriptor is declared for the Video
class device. Below is the structure which contains this descriptor. This will be requested
by the host when the device is enumerated on the USB bus.

/* USB Device Descriptor #*/
static unsigned char devDesc[] =

{
0x12, /* @ bLength */
USB_DESCTYPE_DEVICE, /* 1 bdescriptorType - Devicex*/
0x00, /* 2 bcdUSB version */
0x02, /#* 3 becdUSB version #*/
OXEF, /* 4 bDeviceClass - USB Miscellaneous Class */
0x02, /* 5 bDeviceSubClass - Common Class */
0x01, /* 6 bDeviceProtocol - Interface Association Descriptor */
0x40, /* 7 bMaxPacketSize for EP@ - max = 64%/
(VENDOR_ID & OxFF), /* 8 idVendor */
(VENDOR_ID >> 8), /* 9 idVendor */
(PRODUCT_ID & BOxFF), /* 10 idProduct */
(PRODUCT_ID >> 8), /* 11 idProduct #*/
(BCD_DEVICE & BOxFF), /* 12 bcdDevice */
(BCD_DEVICE >> 8), /* 13 bcdDevice */
0x01, /* 14 iManufacturer - index of string*/
0x02, /* 15 iProduct - index of stringx/
0x00, /* 16 iSerialNumber - index of string#/
0x01 /* 17 bNumConfigurations */
}i

From this descriptor you can see that product, vendor and device firmware revision are all
coded into this structure. This will allow the host machine to recognise the video device
when it is connected to the USB bus.

For Video class device, it is mandatory to set the bDeviceClass, bDeviceSubClass
and bDeviceProtocol fields to OxEF, 0x02 and 0x0T respectively.

ANO00127: USB Video Class Device

USB Configuration Descriptor

The USB configuration descriptor is used to configure the device in terms of the device
class and the endpoints setup. The hierarchy of descriptors under a configuration in-
cludes interface association descriptor, interfaces descriptors, class-specific descriptors
and endpoints descriptors.

When a host requests a configuration descriptor, the entire configuration hierarchy in-
cluding all the related descriptors are returned to the host. The following code shows
the configuration hierarchy of the demo application.

/* USB Configuration Descriptor #*/

static unsigned char cfgDesc[] = {
0x09, /* 8 bLength */
USB_DESCTYPE_CONFIGURATION, /* 1 bDescriptorType - Configuration#*/
OXAE, 00, /* 2 wTotallLength */
0x02, /% 4 bNumInterfaces */
0xe1, /* 5 bConfigurationValue #/
0x03, /* 6 iConfiguration - index of string */
0x80, /* 7 bmAttributes - Bus powered */
OxFA, /* 8 bMaxPower (in 2mA units) - 566mA */

/* Interface Association Descriptor */

0x08, /* 8 bLength */

USB_DESCTYPE_INTERFACE_ASSOCIATION, /* 1 bDescriptorType - Interface Association */
0x00, /* 2 bFirstInterface - VideoControl i/f */

0x02, /* 3 bInterfaceCount - 2 Interfaces */

USB_CLASS_VIDEO, /* 4 bFunctionClass - Video Class #*/
USB_VIDEO_INTERFACE_COLLECTION, /* 5 bFunctionSubClass - Video Interface Collection #*/
0x00, /* 6 bFunctionProtocol - No protocol */

0x02, /* 7 iFunction - index of string #*/

/* Video Control (VC) Interface Descriptor */

0x09, /% 0 bLength */

USB_DESCTYPE_INTERFACE, /* 1 bDescriptorType - Interface */

0x00, /* 2 bInterfaceNumber - Interface 8 */

0x00, /* 3 bAlternateSetting */

0xe1, /* 4 bNumEndpoints */

USB_CLASS_VIDEO, /* 5 bInterfaceClass - Video Class */

USB_VIDEO_CONTROL, /* 6 bInterfaceSubClass - VideoControl Interface */

0x00, /* 7 bInterfaceProtocol - No protocol */

0x02, /% 8 iInterface - Index of string (same as iFunction of IAD) */
/* Class-specific VC Interface Header Descriptor */

0xeD, /* @ bLength */

USB_DESCTYPE_CS_INTERFACE, /* 1 bDescriptorType - Class-specific Interface */
USB_VC_HEADER, /* 2 bDescriptorSubType - HEADER */

0x10, 0x0e1, /* 3 bedUVC - Video class revision 1.1 #*/

0x28, 0x00, /* 5 wTotalLength - till output terminal */
WORD_CHARS(160000000) , /* 7 dwClockFrequency - 166MHz (Deprecated) */

0xe1, /* 11 bInCollection - One Streaming Interface #/

0xe1, /* 12 baInterfaceNr - Number of the Streaming interface */

/* Input Terminal (Camera) Descriptor - Represents the CCD sensor (Simulated here in this demo) */
*

0x12, 0 bLength */

USB_DESCTYPE_CS_INTERFACE, /* 1 bDescriptorType - Class-specific Interface */
USB_VC_INPUT_TERMINAL, /% 2 bDescriptorSubType - INPUT TERMINAL */

0xe1, /* 3 bTerminalID */

0x01, 0x02, /* 4 wTerminalType - ITT_CAMERA type (CCD Sensor) */
0x00, /* 6 bAssocTerminal - No association #*/

0x00, /% 7 iTerminal - Unused */

0x00, 0x00, /* 8 wObjectiveFocallLengthMin - No optical zoom supported */
0x00, 0x00, /* 10 wObjectiveFocallLengthMax - No optical zoom supported#/
0x00, 0x00, /* 12 wOcularFocalLength - No optical zoom supported #*/
0x03, /* 14 bControlSize - 3 bytes */

0x00, 0x00, 0x00, /* 15 bmControls - No controls are supported */

/* Output Terminal Descriptor */

0x09, /* @ bLength =*/

USB_DESCTYPE_CS_INTERFACE, /* 1 bDescriptorType - Class-specific Interface */
USB_VC_OUPUT_TERMINAL, /% 2 bDescriptorSubType - OUTPUT TERMINAL +*/

0x02, /* 3 bTerminalID */

0xe1, 6xe1, /* 4 wTerminalType - TT_STREAMING type */

0x00, /* 6 bAssocTerminal - No association */

0x01, /* 7 bSourceID - Source is Input terminal 1 */

0x00, /* 8 iTerminal - Unused */

/* Standard Interrupt Endpoint Descriptor */

0x07, /* @ bLength */

USB_DESCTYPE_ENDPOINT, /* 1 bDescriptorType */

(VIDEO_STATUS_EP_NUM | 6x80), /* 2 bEndpointAddress - IN endpoint*/

0x03, /* 3 bmAttributes - Interrupt transfer x/

0x40, 0x00, /* 4 wMaxPacketSize - 64 bytes */

0x09, /* 6 bInterval - 2/(9-1) microframes = 32ms */

/+* Class-specific Interrupt Endpoint Descriptor */
0x05, /* 0 bLength */
USB_DESCTYPE_CS_ENDPOINT, /* 1 bDescriptorType - Class-specific Endpoint */

(continues on next page)

K Y,

ANO00127: USB Video Class Device

(continued from previous page)

0xe3, /* 2 bDescriptorSubType - Interrupt Endpoint #*/
0x40, 0x00, /* 3 wMaxTransferSize - 64 bytes */

/* Video Streaming Interface Descriptor #*/
/% Zero-bandwidth Alternate Setting 0 */

bLength */

bDescriptorType - Interface */

bInterfaceNumber - Interface 1 */
bAlternateSetting - 0 */

bNumEndpoints - No bandwidth used */
bInterfaceClass - Video Class */
bInterfaceSubClass - VideoStreaming Interface */
bInterfaceProtocol - No protocol #*/

iInterface - Unused */

Input Header Descriptor #*/

bLength */

bDescriptorType - Class-specific Interface */
bDescriptorSubType - INPUT HEADER */

bNumFormats - One format supported */

wTotalLength - Size of class-specific VS descriptors */
bEndpointAddress - Iso EP for video streaming */
bmInfo - No dynamic format change */

bTerminalLink - Denotes the Output Terminal */
bStillCaptureMethod - Method 1 supported */

10 bTriggerSupport - No Hardware Trigger */

bTriggerUsage */
bControlSize - 1 byte */
bmaControls - No Controls supported #*/

bLength */

bDescriptorType - Class-specific Interface */
bDescriptorSubType - FORMAT UNCOMPRESSED */
bFormatIndex */

0x09, /% 0
USB_DESCTYPE_INTERFACE, /%1
0xe1, /% 2
0x00, /* 3
0x00, /* 4
USB_CLASS_VIDEO, /* 5
USB_VIDEO_STREAMING, /* 6
0x00, /% 7
0x00, /* 8
/# Class-specific VS Interface
Ox6E, /* 0
USB_DESCTYPE_CS_INTERFACE, /* 1
USB_VS_INPUT_HEADER, /% 2
0xe1, /* 3
0x47, 0x00, /% 4
(VIDEO_DATA_EP_NUM | 0x88), /* 6
0x00, /% 7
0x02, /* 8
0x01, /* 9
0x00, /%
0x00, /* 11
0x01, /% 12
0x00, /* 13
/* Class-specific VS Format Descriptor */
0x1B, /% @
USB_DESCTYPE_CS_INTERFACE, /* 1
USB_VS_FORMAT_UNCOMPRESSED, /+* 2
0x01, /% 3
0x01, /% 4

0x59,0x55, 0x59, 0x32,
0x00,0x00,0x10, 0x00,
0x80,0x00,0x00, OxAA,

5

21
22
23
24
25
26

OCNNAWN=®

bNumFrameDescriptors - 1 Frame descriptor followed */

guidFormat - YUY2 Video format #*/

bBitsPerPixel - 16 bits */

bDefaultFrameIndex */

bAspectRatioX */

bAspectRatioY */

bmInterlaceFlags - No interlaced mode */
bCopyProtect - No restrictions on duplication */

bLength */

bDescriptorType - Class-specific Interface #*/
bDescriptorSubType */

bFrameIndex */

bmCapabilities - Still image capture method 1 */
wWidth */

wHeight */

dwMinBitRate */

0x00,0x38,0x9B, 0x71, /%
BITS_PER_PIXEL, /*
0xe1, /*
0x00, /%
0x00, /*
0x00, /%
0x00, /%
/# Class-specific VS Frame Descriptor */
Ox1E, /%
USB_DESCTYPE_CS_INTERFACE, /*
USB_VS_FRAME_UNCOMPRESSED, /*
0xe1, /*
0xe1, /*
SHORT_CHARS (WIDTH), /%
SHORT_CHARS (HEIGHT), /%
WORD_CHARS (MIN_BIT_RATE), /%

WORD_CHARS (MAX_BIT_RATE), /%
WORD_CHARS (MAX_FRAME_SIZE), /*
WORD_CHARS (FRAME_INTERVAL), /*
oxe1, /*
WORD_CHARS (FRAME_INTERVAL), /*

13
17
21
25
26

dwMaxBitRate */

dwMaxVideoFrameBufSize */
dwDefaultFrameInterval (in 100ns units) */
bFrameIntervalType */

dwFrameInterval (in 166ns units) #/

/* Video Streaming Interface Descriptor */

/* Alternate Setting 1 */

PN NAWN=®

8x09, /%
USB_DESCTYPE_INTERFACE, /%
0x01, /%
0x01, /%
0x01, /%
USB_CLASS_VIDEO, /%
USB_VIDEO_STREAMING, /%
0x00, /*
0x00, /%
/% Standard VS Isochronous Video
0x07, /*
USB_DESCTYPE_ENDPOINT, /%
(VIDEO_DATA_EP_NUM | 0x80), /*
0x05, /%
0x00, 0x04, /*
0xe1, /*

H

(2]
1
2
3
4
6

bLength */

bDescriptorType - Interface */

bInterfaceNumber - Interface 1 */
bAlternateSetting - 1 */

bNumEndpoints */

bInterfaceClass - Video Class */
bInterfaceSubClass - VideoStreaming Interface */
bInterfaceProtocol - No protocol */

iInterface - Unused */

Data Endpoint Descriptor */

bLength */

bDescriptorType */

bEndpointAddress - IN Endpoint */

bmAttributes - Isochronous EP (Asynchronous) */
wMaxPacketSize 1x 1024 bytes#/

bInterval */

The configuration descriptor tells host about the power requirements of the device and
the number of interfaces it supports.

Multiple interfaces together provides the video functionality. This group of interfaces
is called Video Interface Collection. The Video Interface Collection is described by an
interface association descriptor (IAD). In the example application, the IAD defines that

10

ANO00127: USB Video Class Device

the interface zero and one group to form the USB Video device. These two interfaces
are:

Video Control Interface (VC Interface)
Video Streaming Interface (VS Interface)

Note: A video function must have one VideoControl interface and zero or more
VideoStreaming interfaces.

VideoControl Interface

This interface controls the functional behavior of the video device. It is described by both
standard and class-specific descriptors.

The Standard VC interface descriptor identifies the interface number and class and pro-
vides the number of endpoints that belongs to this interface. The default Endpoint 0
is used by this interface for control purpose through class-specific requests. Another
optional endpoint called Status Interrupt Endpoint is used to send asynchronous status
notifications to the host. This interrupt endpoint is described by both standard and class-
specific endpoint descriptors.

The Class-Specific VC interface descriptor describes the whole topology of the video
device. It includes Unit descriptors and Terminal descriptors. The example application
doesn't include any Units and hence only Terminal descriptors can be found in the de-
scriptors hierarchy structure.

The Class-Specific descriptors starts with a header called VC Interface Header descrip-
tor. This descriptor mentions the version of UVC specification followed and the collection
of streaming interfaces to which this VideoControl interface belongs.

The Input Terminal descriptor provides information on the functional aspects of the input
source of the video device. Following code shows the fields of this descriptor:

USB_VC_INPUT_TERMINAL, /% 2 bDescriptorSubType - INPUT TERMINAL */

0xe1, /* 3 bTerminalID #*/

0x01, 0x02, /* 4 wTerminalType - ITT_CAMERA type (CCD Sensor) #/
0x00, /* 6 bAssocTerminal - No association */

In the above code, the bTerminalID is an unique identifier of this terminal and
bTerminalType declares camera as the input type.

The Output Terminal descriptor is shown in the following code.

USB_VC_OUPUT_TERMINAL, /* 2 bDescriptorSubType - OUTPUT TERMINAL »*/
0x02, /* 3 bTerminalID */

0x01, 0x01, /* 4 wTerminalType - TT_STREAMING type */
0x00, /* 6 bAssocTerminal - No association */

0x01, /* 7 bSourceID - Source is Input terminal 1 */
0x00, /* 8 iTerminal - Unused */

The above descriptor shows that the bSourcelID is defined as 0x01 which is the
bTerminallID of the input terminal. This information shows the interconnection be-
tween the entities, which the host uses to identify the topology of the video device.

VideoStreaming Interface

VideoStreaming interfaces are used to interchange video data streams between the Host
and the Video device. Each interface can have one isochronous or bulk data endpoint.
Interfaces supporting isochronous video transfer must have alternate settings which en-
ables host to change the bandwidth requirements imposed by an active isochronous
pipe. It is also mandatory to provide a zero-bandwidth alternate setting as the default al-
ternate setting(alternate setting zero) that provides the host software the option to tem-
porarily relinquish USB bandwidth by switching to this alternate setting.

In the UVC example, the zero-bandwidth alternate setting of the VideoStreaming inter-
face is described by standard interface descriptor and class-specific VS interface de-
scriptors.

1 y,

ANO00127: USB Video Class Device

The Standard VS interface descriptor provides the interface number, the number of end-
points that belongs to this interface etc. In case of zero-bandwidth alternate setting the
number of endpoints is set to zero.

The Class-Specific VS interface descriptors are used to describe the supported video
stream formats, video frame details, still image frame details, color profile of video data
etc. The following is the list of these class-specific descriptors:

Input Header descriptor
Output Header descriptor
Payload Format descriptor
Video Frame descriptor

Still Image frame descriptor
Color Matching descriptor

The Input Header descriptor is meant for interfaces that contain IN endpoint and Output
Header is for interfaces that contain OUT endpoint.

The following code shows the fields of Input Header descriptor:

USB_VS_INPUT_HEADER, /* 2 bDescriptorSubType - INPUT HEADER */

0x01, /* 3 bNumFormats - One format supported */

0x47, 0x00, /* 4 wTotalLength - Size of class-specific VS descriptors */
(VIDEO_DATA_EP_NUM | 0x88), /* 6 bEndpointAddress - Iso EP for video streaming */

0x00, /% 7 bmInfo - No dynamic format change */

0x02, /* 8 bTerminalLink - Denotes the Output Terminal =*/

The above code shows the number of formats supported, the address of endpoint which
streams video data and the output terminal ID which links to this streaming interface.

The Payload Format descriptor describes the video format. The fields of this descriptor
is shown below:

USB_VS_FORMAT_UNCOMPRESSED, /+* 2 bDescriptorSubType - FORMAT UNCOMPRESSED */

0x01, /* 3 bFormatIndex */

0x01, /* 4 bNumFrameDescriptors - 1 Frame descriptor followed */
0x59,0x55, 0x59, 0x32,

0x00, 0x00, 0x10, 8x08,

0x80, 0x00, 0x00, BXAA,

0x00,0x38,0x9B, 0x71, /* 5 guidFormat - YUY2 Video format */
BITS_PER_PIXEL, /* 27 bBitsPerPixel - 16 bits */
0x01, /* 22 bDefaultFrameIndex */

The above code shows that the video stream is of uncompressed YUY2 format and uses
16-bits per pixel.

The Video Frame descriptor mentions the frame resolution, frame rate, video buffer size
etc. The following code shows the fields of this descriptor:

USB_VS_FRAME_UNCOMPRESSED, /* 2 bDescriptorSubType */

0xe1, /* 3 bFrameIndex #*/

0x01, /* 4 bmCapabilities - Still image capture method 1 */
SHORT_CHARS(WIDTH), /% 5 wWidth */

SHORT_CHARS (HEIGHT), /* 7 wHeight #/

WORD_CHARS (MIN_BIT_RATE), /* 9 dwMinBitRate */

WORD_CHARS (MAX_BIT_RATE), /* 13 dwMaxBitRate */

WORD_CHARS (MAX_FRAME_SIZE), /* 17 dwMaxVideoFrameBufSize */

WORD_CHARS (FRAME_INTERVAL), /* 21 dwDefaultFrameInterval (in 100ns units) #*/
0x01, 25 bFrameIntervalType */

WORD_CHARS (FRAME_INTERVAL), /+# 26 dwFrameInterval (in 100ns units) #*/

~
*

The defines used in the above code are present in the uvc_defs.h file and they are shown
below:

/* USB Video resolution */
#define BITS_PER_PIXEL 16
#define WIDTH 486
#define HEIGHT 270

/* Frame rate */

#define FPS 30

(continues on next page)

12 y,

ANO00127: USB Video Class Device

(continued from previous page)

#define MAX_FRAME_SIZE (WIDTH * HEIGHT * BITS_PER_PIXEL / 8)
#define MIN_BIT_RATE (MAX_FRAME_SIZE * FPS * 8)

#define MAX_BIT_RATE (MIN_BIT_RATE)

#define LINE_SIZE_BYTES (WIDTH * BITS_PER_PIXEL / 8)

#define HEADER_BYTES (12)

#define PAYLOAD_SIZE (LINE_SIZE_BYTES + HEADER_BYTES)

/% Interval defined in 10@ns units */
#define FRAME_INTERVAL (10000000/FPS)

The other alternate setting of this interface has the data streaming isochronous endpoint
and it is the operational alternate setting. The class-specific descriptors are not repeated
in this alternate setting.

The Standard VS Isochronous Endpoint descriptor of the alternate setting 1 of the UVC
example is shown below:

/+* Standard VS Isochronous Video Data Endpoint Descriptor #/

o
0x07, /* 8 bLength */

USB_DESCTYPE_ENDPOINT, /* 1 bDescriptorType */

(VIDEO_DATA_EP_NUM | 0x80), /* 2 bEndpointAddress - IN Endpoint */

0x05, /* 3 bmAttributes - Isochronous EP (Asynchronous) */
0x00, 0x04, /* 4 wMaxPacketSize 1x 1024 bytesx/

0x01, /* 6 bInterval /

The above code shows that the maximum packet size of the endpoint is 1024 bytes and
the ‘binterval’ of 0x07 requests host to poll the endpoint every microframe (125 us).

In general, USB video devices supports a set of video parameter combinations (includ-
ing video format, frame size and frame rate) and multiple alternate settings with differ-
ent maximum packet size endpoints. This enables the host to select the appropriate
alternate setting that provides only the required bandwidth for a given video parameter
combination.

USB String Descriptors

String descriptors provide human readable information for the device and can be con-
figured with specific USB product information. The descriptors are placed in an array as
shown below:

/* String table - unsafe as accessed via shared memory */

static char * unsafe stringDescriptors|[]=

{

"\x09\x04", /* Language ID string (US English) =*/
"XM0S", /% iManufacturer */

"XMOS USB Video Device",/* iProduct */

"Config", /% iConfiguration string */

h

The XMOS USB library will take care of encoding the strings into Unicode and structure
the content into USB string descriptor format.

13 y,

ANO00127: USB Video Class Device

3.8 USB Standard and Class-Specific requests

In usb_video.xc there is a function Endpoint0() which handles all the USB control requests
sent by host to the control endpoint 0. USB control requests includes both standard USB
requests and the UVC class-specific requests.

In Endpoint0() function, a USB request is received as a setup packet by calling
USB_GetSetupPacket() library function. The setup packet structure is then examined to
distinguish between standard and class-specific requests.

The XMOS USB library provides a function USB_StandardRequests() to handle the stan-
dard USB requests. This function is called with setup packet and descriptors structures
as shown below
/* Returns XUD_RES_OKAY if handled okay,
* XUD_RES_ERR if request was not handled (STALLed),
* XUD_RES_RST for USB Reset */
unsafe{
result = USB_StandardRequests(ep@_out, ep@_in, devDesc,
sizeof(devDesc), cfgDesc, sizeof(cfgDesc),
null, 6, null, @, stringDescriptors, sizeof(stringDescriptors)/

<ssizeof(stringDescriptors[0]),
sp, usbBusSpeed);
}

The video class interfaces use endpoint 0 as the control element and receives all class-
specific requests on it. The class-specific requests are used to set and get video related
controls. These request are divided into:

VideoControl requests
VideoStreaming requests

The function UVC_InterfaceClassRequests() present in uvc_reg.c handles the class-
specific requests. The defines corresponding to the class-specific request codes are
present in uvc_defs.h as shown below.

/* Video Class-specific Request codes */

#define SET_CUR 0x01
#define GET_CUR 0x81
#define GET_MIN 0x82
#define GET_MAX 0x83
#define GET_RES 0x84
#define GET_LEN 0x85
#define GET_INFO 0x86
#define GET_DEF 0x87

In the UVC example, the SET and GET requests for Video Probe and Commit Controls
are handled. The Video Probe and Commit Controls are involved in the negotiation of
streaming parameters between the host and the device. The following code shows the
structure of the streaming parameters that are negotiated with those Controls.

/* Video Probe and Commit Controls (Table 4-47 , UVC 1.1) */
typedef struct
{
unsigned short bmHint;
unsigned char bFormatIndex;
unsigned char bFrameIndex;
unsigned int dwFramelInterval;
unsigned short wKeyFrameRate;
unsigned short wPFrameRate;
unsigned short wCompQuality;
unsigned short wCompWindowSize;
unsigned short wDelay;
unsigned int dwMaxVideoFrameSize;
unsigned int dwMaxPayloadTransferSize;
unsigned int dwClockFrequency;
unsigned char bmFramingInfo;
unsigned char bPreferedVersion;
unsigned char bMinVersion;
unsigned char bMaxVersion;
} __attribute__((packed)) UVC_ProbeCommit_Ctrl_t;

The demo application doesn’t have multiple set of streaming parameters and therefore
the GET_DEF, GET_MIN, GET_MAX and GET_CUR requests are handled similarly and re-
turn same values to the host.

14 p,

ANO00127: USB Video Class Device

This source code can be easily extended to support more class-specific requests.

3.9 Video data streaming

Streaming video data between device and host takes place through the streaming end-
point of the VideoStreaming interface. The video is streamed by continuously transmit-
ting the video samples at a particular rate. A video sample refers to an encoded block
of video data that the format-specific decoder is able to accept and interpret in a single
transmission.

In the UVC example, the video data is packed in 4:2:2 YUV format (YUY2) and a video
sample corresponds to a single video frame of 480x270 pixels. Each video sample is
split into multiple class-defined Payload Transfers. A Payload Transfer is composed of
the class-defined payload header followed by the video payload data. The payload format
is as shown below:

Payload Header Payload Data
(12 bytes) (Video Frame Data)
Header length Bit Field header Presentation Timestamp (PTS) Source Clock Reference (SCR)
(1 byte) (1 byte) (4 bytes) (6 bytes)

Fig. 5: Payload format for uncompressed streams

For an isochronous endpoint, each (micro)frame will contain a single payload transfer.
Each payload transfer consists of the payload header followed by the payload data.

The maximum packet size of the isochronous endpoint in the example code is 1024
bytes, therefore excluding the 12 bytes of payload header, 1012 bytes are available for the
video data in a single payload transfer. The video payload data in each payload transfer
consists of a single scan line of the image.

The function VideoEndpointsHandler() present in usb_video.xc handles the isochronous
video data endpoint. Each payload transfer is carried out by using the XUD_SetBuffer()
API of the USB library.

For demonstration, a predefined image of size 480x270 pixels in YUV2 format is stored in
app_an00127/imgs/img.h file. Each time a full frame is transmitted over USB, the starting
position of each row shifts by one pixel, creating a motion effect that simulates video.

The code below fills the payload buffer with the payload header:

/* Fill the payload buffer with payload header */

/* Make the Payload header */

payload_header_ptr[0] = HEADER_BYTES;

payload_header_ptr[1] = frame;

memcpy (&payload_header_ptr[2], &pts, sizeof(pts));

memcpy (&payload_header_ptr[6], &pts, sizeof(pts));

short sof_count_short = (sofCounts>>3) & 2047;

memcpy (&payload_header_ptr[16], &sof_count_short, sizeof(sof_count_short));

In the above code, the pts is Presentation timestamp and it is obtained from a timer
running in the xCORE device at T100MHz. The pts and sofCounts (count of USB SOF)
are used to arrive at the Source Clock reference field.

This is followed by filling the payload data in the the payload buffer with one line of the
image. The line start pixel for a give frame transfer is governed by increment which is
incremented by 1 every frame transfer to simulate a rolling effect.

15 y,

ANOO0127

/* Fill the payload buffer with payload data (one line of the image) */
unsigned start_of_line = line_count * (LINE_SIZE_BYTES / sizeof(int));
unsigned middle_of_line = start_of_line + increment;
unsigned line_size = LINE_SIZE_BYTES / sizeof(int);

// Ensure increment does not exceed line_size
if (increment > line_size) {

increment = line_size;
}

// Copy data from middle_of_line to the end of the line
for (unsigned i = 0; i < line_size - increment; i++) {
payload_data_ptr[i] = img_ptr[middle_of_line++];

// Copy data from start_of_line to increment
for (unsigned j = 0; j < increment; j++) {

- USB Video Class Device

payload_data_ptr[line_size - increment + j] = img_ptr[start_of_line++];

}

The payload transfer is carried out by calling XUD_SetBuffer () as shown below:

/% Payload transfer #*/

result = XUD_SetBuffer(episo_in, (gVideoBuffer, unsigned char[]), PAYLOAD_SIZE);

When the complete image is transferred, 1ine_count rolls back to 0 and increment
is incremented by one to move the line start pixel for the next transfer.

16

if(line_count >= HEIGHT)
{

line_count = 0;

frame = frame * 1; /* Toggle FID bit */

sofCounts += HEIGHT;

increment++;

if (increment >= LINE_SIZE_BYTES / sizeof(int)) {
increment = 9;

ANO00127: USB Video Class Device

3.10 Demo hardware setup

To setup the demo hardware the following boards are required.
> XK-EVK-XU316 board (Fig. 6)
» 2 x Micro-B USB cable

o

&

C us

E357343 UL94V-0
FE-M

10/ ¢/7202 ¢

VDDIOR

g
oD

=
T
H

cal
&
3 O O|RST_N
WUP|O O|GPI00
ono[O O|GPIoT
GPI02|O O|GPIO3
oN0|O O[CK =

MOsI|O O[MISO

" ono|O O|wRQ
" ono|OQO'CSN

.

GND

w
@)
=
X

Fig. 6: XMOS XK-EVK-316 Board

The hardware should be configured as follows:

» Connect the USB receptacle of the XK-EVK-XU376 to the host machine using a USB
cable

» Connect the DEBUG receptacle XK-EVK-XU376 to the host machine using a USB cable

3.11 Building the application

The application uses the xcommon-cmake build system as bundled with the XTC tools.

To configure the build run the following from an XTC command prompt:

17 y,

https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest

ANO00127: USB Video Class Device

cd app_an@@127
cmake -G "Unix Makefiles" -B build

If any dependencies are missing it is at this configure step that they will be downloaded
by the build system.

Finally, the application binary can be built using xmake:

xmake -C build

This command will cause a binary app_an00727.xe to be generated in the
app_an00127/bin directory,

3.12 Launching the demo device

Once the demo example has been built the application can be executed on the XK-EVK-
XU376.

Once built, the binary app_an00127 xe will be generated in the app_an00127/bin directory.

Launching from the command line

From the command line the xrun tool is used to download and run the code on the
xCORE device.

In a terminal with XTC tools sourced, from the app_an@6127/bin directory, run:

Xrun --xscope app_an@0127.xe

Once this command has executed the application will be running on the xCORE device
and the XMOS USB video device should have enumerated on the host machine.

18 y,

ANO00127: USB Video Class Device

3.13 Running the demo

The demo can be run on any OS that has support for USB Video class driver. Windows,
Linux and macOS have native support for UVC driver. The following sections describe in
detail on how to run the demo on those OS platforms.

Running on Windows

» In Microsoft Windows, When the USB Video device enumerates the host driver will be
installed to get the device ready for operation. Fig. 7 shows the dialog that completes
installation of driver for the XMOS USB Video Device.

-
| Driver Software Installatio_

Your device is ready to use

USB Composite Device q/Readyto use
XMOS USE Video Device q/Readyto use

Fig. 7: Driver installation for the Video device

» After the driver is installed properly, use any video capture softwares like VLC Media
player, AmCap etc to open the XMOS USB Video Device.

» Open VLC Media player, select Media menu and click Open Capture Device.... This will
open a dialog window on which you can select the Video device as shown in Fig. 8

| 3 File | @Qisc | !i!ﬂetwork | Capturege\rice

Capture mode [DirectShow ']

Device Selection

Video device name I Refresh list] I Configure] IXMDS USB Video De ']

Audio device name I Refresh list] I Configure] lDefauIt ']

Options

Video size

Advanced options...

[] show mare options

(oo o) [ot

Fig. 8: Open Video device in VLC Media player

19 y,

ANO00127: USB Video Class Device

» Click Play to see the demo video streamed out of the Video device. The video is a
rolling image of a skyline. Fig. 9 shows a snapshot of the video.

[BN avcapture:/[0x113200020b11de0

Fig. 9: Video streamed from the XMOS USB Video device

Running on macOS

» On macOS, once the USB Video device is enumerated the UVC driver will be loaded
by the host to get the device ready for operation. The device will have enumerated as
XMOS USB Video Device.

» The Video device can be opened using any video capture software. Photo Booth is one
such application that comes by default with Mac. Open Photo Booth application, click
on ‘Camera’ menu and then select XMOS USB Video Device. The application will then
show the video streamed out of the USB device. The demo video shows the skyline
of a city moving horizontally in a continuous loop.

Running on Linux

» Under Linux, when the device enumerates the native UVC driver will be loaded and the
device will be mounted as /dev/videoX where X' is a number.

» Use any video capture software like VLC Media player, Cheese, luvcview etc to open
the Video device.

» Open VLC Media player, select Media menu and click Open Capture Device.... This will
open a dialog window on which the video device can be selected as shown in Fig. 10

» Click Play to see the demo video streamed out of the XMOS USB Video Device. The
demo video shows the skyline moving horizontally in a continuous loop

20 A

ANO00127: USB Video Class Device

(3 File Disc %" Network |EH¥ Capture Device

Capture mode [Video for Linux 2 &

Device Selection

Video device name [,’deufuideoﬂ v |

Audio device name | | v |
Options

Video standard | Undefined &

| Advanced options... |

[] show more options
ﬂey | v/ | Cancel

Fig. 10: Open Video device in VLC Media player

4 Further reading

» XMOS XTC Tools Installation Guide
https://xmos.com/xtc-install-guide

» XMOS XTC Tools User Guide
https://www.xmos.com/view/Tools-15-Documentation

» XMOS application build and dependency management system; xcommon-cmake
https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest

» USB 2.0 Specification
https://www.usb.org/document-library/usb-20-specification

» USB Video Class Specification v1.1, USB.org:
https://www.usb.org/document-library/video-class-v11-document-set

» YUV Video Format
http://en.wikipedia.org/wiki/YUV
https://www.kernel.org/doc/html/v4.8/media/uapi/v4l/pixfmt-yuyv.html

21 p.

https://xmos.com/xtc-install-guide
https://www.xmos.com/view/Tools-15-Documentation
https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest
https://www.usb.org/document-library/usb-20-specification
https://www.usb.org/document-library/video-class-v11-document-set
http://en.wikipedia.org/wiki/YUV
https://www.kernel.org/doc/html/v4.8/media/uapi/v4l/pixfmt-yuyv.html

ANO00127: USB Video Class Device

»MOS

Copyright © 2025, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is providing
it to you “AS IS" with no warranty of any kind, express or implied and shall have no liability in relation to its use. Xmos
Ltd. makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, xCore, xcore.ai, and the XMOS logo are registered trademarks of XMOS Ltd in the United Kingdom and other
countries and may not be used without written permission. Company and product names mentioned in this document
are the trademarks or registered trademarks of their respective owners.

22 y,

	Introduction
	Overview
	USB Video Class application note
	Further reading

