
lib_ethernet: Ethernet library

Publication Date: 2025/3/15
Document Number: XM-006386-UG v4.0.1

lib_ethernet: Ethernet library

IN THIS DOCUMENT

1 Introduction . 3
2 Usage . 3
3 Typical resource usage . 4
4 Standard MAC Features . 5

4.1 Feature Overview . 5
4.2 Receive Filter . 5

5 Real-Time MAC Features . 7
5.1 Hardware Time Stamping . 7
5.2 High Priority Queues . 7
5.3 Credit Based Shaper . 7
5.4 VLAN Tag Stripping . 8

6 External signal description . 9
6.1 MII: Media Independent Interface . 9
6.2 RMII: Reduced Media Independent Interface . 9
6.3 RGMII: Reduced Gigabit Media Independent Interface 11

7 Usage . 13
7.1 10/100 Mb/s Ethernet MAC operation . 13
7.2 10/100 Mb/s real-time Ethernet MAC . 15
7.3 10/100/1000 Mb/s real-time Ethernet MAC . 17
7.4 Raw MII interface . 18
7.5 SMI/MDIO interface . 19

8 API . 20
8.1 Creating a 10/100 Mb/s Ethernet MAC instance 20
8.2 Creating a 10/100 Mb/s real-time Ethernet MAC instance 21
8.3 Creating a 10/100/1000 Mb/s Ethernet MAC instance 24
8.4 The Ethernet MAC configuration interface . 25
8.5 The Ethernet MAC data handling interface . 30
8.6 The Ethernet MAC high-priority data handling interface 32
8.7 Creating a raw MII instance . 33
8.8 The MII interface . 33
8.9 Creating an SMI/MDIO instance . 35
8.10 The SMI/MDIO PHY interface . 36
8.11 SMI PHY configuration helper functions . 37

2

lib_ethernet: Ethernet library

1 Introduction

lib_ethernet allows interfacing toMII, RMII or RGMII Ethernet PHYs and provides the
Media Access Control (MAC) function for the Ethernet stack.

Various MAC blocks are available depending on the XMOS architecture selected, desired
PHY interface and line speed, as described in Table 1.

Table 1: Ethernet MAC support by XMOS device family

XCORE Architecture MII 100 Mb RMII 100 Mb GMII 1 Gb RGMII 1 Gb

XS1 Deprecated
from version
4.0.0

N/A N/A N/A

XS2 (xCORE-200) Supported N/A N/A Supported
XS3 (xcore.ai) Supported Supported Contact

XMOS
N/A

The MII MAC is available as two types; a low resource usage version which provides
standard layer 2 data access to an array of clients, and a real-time version which offers
additional hardware features including:

· Hardware time-stamping of point of ingress and egress of frames supporting stan-
dards such as IEEE 802.1AS.

· Support for high priority send and receive queues and receive filtering. This allows
time sensitive traffic to be prioritised over other traffic.

· Traffic shaping on egress using an IEEE 802.1Qav compliant credit based shaper.

· Configurable VLAN tag stripping on received frames.

All RMII and RGMII implementations offer the ‘real-time’ features as standard. See the
Real-Time MAC Features section for more details.

In addition, all MACs support client specific filtering for both source MAC address and
Ethertype. See the Standard MAC Features section for more details.

2 Usage

lib_ethernet is intended to be used with XCommon CMake , the XMOS application
build and dependency management system.

To use lib_ethernet in an application, add lib_ethernet, to the list of dependent
modules in the application’s CMakeLists.txt file.

set(APP_DEPENDENT_MODULES “lib_ethernet”)

All lib_ethernet functions can be accessed via the ethernet.h header file:
#include <ethernet.h>

3

https://www.xmos.com/file/xcommon-cmake-documentation/?version=latest

lib_ethernet: Ethernet library

3 Typical resource usage

Instantiating Ethernet on the XCORE requires resources in terms of memory, threads
(MIPS), ports and other resources. The amount required depends on the feature set of
the MAC. Table 2 summarises the main requirements.

Table 2: Ethernet MAC XCORE resource usage

Configuration Pins Port Requirement Clocks RAM Threads

10/100 Mb/s standard
MII

13 5 (1-bit), 2 (4-bit), 1 (any-
bit)

2 ~16 k 2

10/100 Mb/s Real-Time
MII

13 5 (1-bit), 2 (4-bit) 2 ~23 k 4

10/100 Mb/s Real-Time
RMII

7 3 (1-bit), 2 (4-bit) or 4 (1-
bit)

2 ~25 k 4

10/100/1000Mb/s
RGMII

12 8 (1-bit), 2 (4-bit), 2 (8-
bit)

4 ~102 k 8

Raw MII 13 5 (1-bit), 2 (4-bit) 2 ~10 k 1
SMI (MDIO) 2 2 (1-bit) or 1 (multi-bit) 0 ~1 k 0

Note: The RAM usage shown is for a typical usage rx and tx buffer size that can store
multiple 1500 byte packets. The total RAM usage by the MAC will increase or decrease
depending on buffer size settings which is set by the user.

Note: Not all ports are brought out to pins since they are used internally to the device.
Hence the total port bit-count may not always match the required device pin count.

Note: The SMI configuration API allows the SMI task to bedistributedwhichmeans,
when placed on the same tile as the client (e.g. PHY management task), read and write
API calls will be turned into function calls by the compiler. Consequently it doesn’t nor-
mally require a dedicated xCORE thread. The read and write API calls always block until
the last bit of the SMI transaction is complete.

4

lib_ethernet: Ethernet library

4 Standard MAC Features

4.1 Feature Overview

All MACs in this library support a number of useful features which can be configured by
clients.

· Support for multiple clients (Rx and Tx) allowing many tasks to share the MAC.

· Configurable Ethertype and MAC address filters for unicast, multicast and broadcast
addresses and is configurable per client. The number of entries is configurable using
ETHERNET_MACADDR_FILTER_TABLE_SIZE.

· Configurable sourceMAC address. Thismay be used in conjunctionwith, for example,
lib_otp to provide a unique MAC address per XMOS chip.

· Link state detection allowing action to be taken by higher layers in the case of link state
change.

· Separately configurable Rx and Tx buffer sizes (queues).

· VLAN aware received packet length calculation. If the VLAN tag (0x8100) is seen the
header length is automatically extended by 4 octets to support the Tag Protocol Iden-
tifier (TPID) and Tag Control Information (TCI).

Transmission of packets is via an API that blocks until the frame has been copied into
the transmit queue. This means the buffer size should be appropriately sized for your
application or the application should tolerate blocking.

Reception of a packet blocks until a packet is available. Itmay however be combinedwith
an asynchronous notification allowing the client to select on the XC interface where-
upon it can then receive the waiting packet. This provides an efficient, event-driven API
option. Please see the API for details on how to use the MAC.

In addition, the RMII RTMAC supports an exit command. This tears down all of the tasks
associated with the MAC and frees the memory and XCORE resources used, including
ports. After exit, the MAC may be re-started again. This can be helpful in cases where
ports may be shared (eg. Flash memory) allowing DFU support in package constrained
systems. It may also be used to support multiple connect PHY devices where redun-
dancy is required, without costing the chip resources to support multiple MACs.

4.2 Receive Filter

All ethernet MACs support filtering of received packets. The filtering consists of two
stages; first destination MAC address filtering followed by an optional Ethertype filter.
Note that Ethertype filters are not supported on high priority receive queues.

By default the receiveMACaddress filter has no entries so all clientsmust register at least
one MAC address filter entry to be able to receive packets. The size of the filter table is
statically defined by ETHERNET_MACADDR_FILTER_TABLE_SIZE which is nominally
set to 30 which is the maximum number of total entries for all clients that can be sup-
ported whilst still maintaining full line rate reception without packet drops. The MII and
RMII MACs use a linear search whereas the RGMII MAC uses a hash table which offers
higher performance required by the line speed at the cost of greater memory usage.

Multiple MAC addresses may be registered per client including the broadcast MAC ad-
dress FF:FF:FF:FF:FF:FFwhich is needed by some protocols such as ARP, DHCP or
WoL. Any MAC address matching one of the filter entries will be forwarded to the client
that registered it. It is possible for multiple clients to register and share the same desti-

5

lib_ethernet: Ethernet library

nation MAC address and receive the same packet. However, in the case of the real-time
MACs, where a high priority receive queue is enabled, it is not possible for a mixture of
high and low priority queues to filter by the same mac address; the user must choose
either high priority or low priority for a given MAC address filter entry.

Once a packet has been filtered for destination MAC address and forwarded to the
server for client reception, an additional Ethertype filter is optionally applied for low
priority queues only. If no Ethertype filter has been registered for a client then the
Ethertype field is ignored and all packets are forwarded to the client. A maximum of
ETHERNET_MAX_ETHERTYPE_FILTERS (set to two statically) are supported per client.

For real-time MACs, VLAN tagged packets are automatically detected and the extracted
Ethertype field position within the packet is automatically accounted for.

For details of the API regarding filter configuration, please see the configuration API doc-
umentation.

6

lib_ethernet: Ethernet library

5 Real-Time MAC Features

In addition to all of the features outlined in the Standard MAC Features section, real-time
(RT) MACs offer enhanced features which are useful in a number of applications such as
industrial control, real-timenetworking andAudio/Video streaming cases. These specific
features are introduced below.

5.1 Hardware Time Stamping

The XCORE contains architectural features supporting precise timing measurements.
Specifically, a 100 MHz timer is included and the RT MACs make use of this to times-
tamp packets at the point of ingress and egress. This 100 MHz, 32-bit timer value has a
resolution of 10 nanoseconds and the provided timestamp can be converted to nanosec-
onds by multiplying by 10.

When receiving packets, a reference to a structure of type ethernet_packet_info_t
contains the timestamp of the received packet at point of ingress.

When transmitting packets, an additional Tx API is provided for the RTMACwhich blocks
until the packet has been transmitted and returns the time of egress.

These features, along with APIs to tune the ingress and egress latency offsets, can be
used by higher layers such as IEEE 802.1AS (Timing and Synchronization) or PTP (IEEE
1588) to implement precise timing synchronisation across the network.

5.2 High Priority Queues

The RT MACs extend the standard client interfaces with the support of a dedicated High
Priority (HP) queue. This queue allows traffic to be received or transmitted before lower
priority traffic, which is useful in real-time applications where the network is shared with
normal, lower priority, traffic. The MAC logic always prioritises HP packets and queues
over low priority.

The dedicated HP client API uses streaming channels instead of XC interfaces which
provide higher performance data transfer. A dedicated channel is used for each of the
receive and transmit interfaces. Streaming channels offer higher performance at the
cost of occupying a dedicated switch path whichmay require careful consideration if the
client is placed on a different tile from theMAC. This is important due to the architectural
limitation of a maximum of four inter-tile switch paths between tiles. A maximum of one
HP receive and transmit client are be supported per MAC.

A flag in the filter table canmanually be set whenmaking filter entries which is then used
to determine the priority level when receiving packets. This determines which queue to
use.

The transmit HP queue is optionally rate limited using the Credit Based Shaper which
is described below. Together, these features provide the mechanisms required by IEEE
802.1Qav enabling reliable, low-latency delivery of time-sensitive streams over Ethernet
networks.

5.3 Credit Based Shaper

The Credit Based Shaper (CBS), in conjunction with the HP queue, limits the bandwidth
of non-time-sensitive traffic and ensures a reserved bandwidth for high-priority streams.

The CBS uses the following mechanisms to manage egress rate:

7

lib_ethernet: Ethernet library

· Credits: The high priority queue is assigned a “credit” that increases or decreases over
time based on the network’s traffic conditions.

· Idle Slope: Determines howquickly credit increaseswhen the queue is idle (i.e., waiting
to transmit).

· Transmission of data decreases credit proportionally to the number of bits sent.

If the credit is positive, the high priority stream is eligible for transmission and will always
be transmitted before any low priority traffic. If the credit is negative, the high priority
stream is paused until the credit returns to a positive state. By spreading traffic out
evenly over time using a CBS, the queue size in each bridge and endpoint can be shorter,
which in turn reduces the latency experienced by traffic as it flows through the system.

The RT MACs are passed an enum argument when instantiated which enables or dis-
ables the CBS. In addition the MAC provides an API which can adjust the high-priority
transmit queue’s CBS idle slope dynamically, for example, if a different bandwidth reser-
vation is required.

The idle slope passed is a fractional value representing the number of bits per refer-
ence timer tick in a Q16.16 format defined by MII_CREDIT_FRACTIONAL_BITS allow-
ing very precise control over bandwidth reservation. Please see API for details and an
example showing how to convert from bits-per-second to the slope argument.

5.4 VLAN Tag Stripping

In addition to standard MAC VLAN awareness of received packets when calculating pay-
load length, the RTMAC also includes a feature to optionally strip VLAN tags. If the VLAN
tag (0x8100) is seen the header length is automatically extended by 4 octets to support
the Tag Protocol Identifier (TPID) and Tag Control Information (TCI). This is done inside
the MAC so that the application can directly utilise the incoming packet payload. VLAN
stripping is dynamically controllable on a per-client basis.

8

lib_ethernet: Ethernet library

6 External signal description

6.1 MII: Media Independent Interface

MII is an interface standardized by IEEE 802.3 that connects different types of PHYs to
the same Ethernet Media Access Control (MAC). The MAC can interact with any PHY
using the same hardware interface, independent of the media the PHYs are connected
to.

The MII transfers data using 4 bit words (nibbles) in each direction, clocked at 25 MHz
to achieve 100 Mb/s data rate.

An enable signal (TXEN) is set active to indicate start of frame and remains active until
it is completed. A clock signal (TXCLK) clocks nibbles (TXD[3:0]) at 2.5 MHz for 10 Mb/s
mode and 25 MHz for 100 Mb/s mode. The RXDV signal goes active when a valid frame
starts and remains active throughout a valid frame duration. A clock signal (RXCLK)
clocks the received nibbles (RXD[3:0]). Table 3 describes the MII signals:

Table 3: MII signals

Port Requirement Signal Name Description

4-bit port [Bit 3] TXD3 Transmit data bit 3
4-bit port [Bit 2] TXD2 Transmit data bit 2
4-bit port [Bit 1] TXD1 Transmit data bit 1
4-bit port [Bit 0] TXD0 Transmit data bit 0
1-bit port TXCLK Transmit clock (2.5/25 MHz)
1-bit port TXEN Transmit data valid
1-bit port RXCLK Receive clock (2.5/25 MHz)
1-bit port RXDV Receive data valid
1-bit port RXERR Receive data error
4-bit port [Bit 3] RX3 Receive data bit 3
4-bit port [Bit 2] RX2 Receive data bit 2
4-bit port [Bit 1] RX1 Receive data bit 1
4-bit port [Bit 0] RX0 Receive data bit 0

Any unused 1-bit and 4-bit xCORE ports can be used for MII provided that they are on the
same tile and there is enough resource to instantiate the relevant Ethernet MAC compo-
nent on that tile.

6.2 RMII: Reduced Media Independent Interface

RMII is an interface standardized by IEEE 802.3 that connects different types of PHYs
to the same Ethernet Media Access Control (MAC). The MAC can interact with any PHY
using the same hardware interface, independent of the media the PHYs are connected
to. It offers similar functionality to MII however offers a reduced pin-count.

The RMII transfers data using 2 bit words (half-nibbles) in each direction, clocked at 50
MHz to achieve 100 Mb/s data rate.

An enable signal (TXEN) is set active to indicate start of frame and remains active until
it is completed. A common, externally provided, clock signal clocks 2 bits (TXD[1:0]) at
50 MHz for 100 Mb/s mode. The RXDV signal goes active when a valid frame starts and

9

lib_ethernet: Ethernet library

remains active throughout a valid frame duration. The common clock signal clocks the
received half-nibbles (RXD[1:0]).

Note that either half of a 4-bit port (upper or lower pins) may be used for data or alterna-
tively two 1-bit portsmay be used. This provides additional pinout flexibility whichmay be
important in applications which use low pin-count packages. Both Rx and Tx have their
port type set independently and can be mixed. Unused pins on a 4-bit port are ignored
for Rx and driven low for Tx.

Note: By default most RMII PHYs supply a CRS_DV signal (carrier sense) instead of
an RX_DV data valid strobe. This library requires the PHY to be configured so that the
receive data strobe is set to RX_DVmode. Please check your chosen PHY supports this.

The RMII MAC requires a minimum thread speed of 75 MHz which allows all 8 hardware
threads to be used on a 600 MHz xcore.ai device.

Table 4 describes the RMII signals:

Table 4: RMII signals

Port Requirement Signal Name Description

4-bit port [Bit 1 or 3] or 1-bit port TXD1 Transmit data bit 1
4-bit port [Bit 0 or 2] or 1-bit port TXD0 Transmit data bit 0
1-bit port PHY_CLK PHY clock (50 MHz)
1-bit port TXEN Transmit data valid
1-bit port RXDV Receive data valid
4-bit port [Bit 1 or 3] or 1-bit port RX1 Receive data bit 1
4-bit port [Bit 0 or 2] or 1-bit port RX0 Receive data bit 0

Any unused 1-bit and 4-bit xCORE ports can be used for RMII provided that they are on
the same tile and there are sufficient chip resources to instantiate the relevant Ethernet
MAC component on that tile.

Port timing on xCORE devices typically becomes important above 20 MHz. Since RMII
operates at 50 MHz, it is likely that port timings will need to be adjusted to center the
data valid windows for both capture (RX) and presentation (TX) for maximum reliability.
These timings are provided by a structure port_timing which has various members
to control the on-chip delays.

The detail for how to set the values is outside the scope of this document, however the
user is encouraged to consult the IO timings for xcore.ai document for further under-
standing. Aspects of the hardware design including PCB layout, clock skew, duty cycle
and pin drive strength will affect these adjustments. The RMII MAC example in this repo
shows an example port timing struct for a specific board.

In summary, the fields (and their uses) in the port_timing structure are as follows:

· clk_delay_tx_rising - The number of core clock cycles to delay the capture clock. Since
no signal capture occurs in the TX section this value is not critical, however it should
be set to the same as clk_delay_tx_falling.

10

https://www.xmos.com/documentation/XM-014231-AN/html/rst/index.html

lib_ethernet: Ethernet library

· clk_delay_tx_falling - The number of core clock cycles to delay the drive clock falling
edge. Increasing this value delays the presentation of the TX data and TXEN signal
relative to the external ethernet clock.

· clk_delay_rx_rising - The number of core clock cycles to delay the capture clock. In-
creasing this value delays the point at which the RX data and RXDV are sampled rela-
tive to the external ethernet clock.

· clk_delay_rx_falling - The number of core clock cycles to delay the drive clock. Since
no signal drive occurs in the RX section this value is not critical, however it should be
set to the same as clk_delay_rx_rising.

· pad_delay_rx - The number of core clock cycles to delay the sampling of RX data and
strobe. Because this setting delays the data and not the clock, it has the effect of
adding negative clock delay, which can be useful in some cases.

6.3 RGMII: Reduced Gigabit Media Independent Interface

RGMII requires half the number of data pins used in GMII by clocking data on both the
rising and the falling edges of the clock, and by eliminating non-essential signals (carrier
sense and collision indication).

xCORE-200 XE/XEF devices have a set of pins that are dedicated to communication with
a Gigabit Ethernet PHY or switch via RGMII, designed to comply with the timings in the
RGMII v1.3 specification.

RGMII supports Ethernet speeds of 10 Mb/s, 100 Mb/s and 1000 Mb/s.

The Ethernet MAC implements ID mode as specified by RGMII. TX clock from xCORE to
PHY is delayed. Default 10/100 and 1000 Mb/s delays are set in rgmii_consts.h to an
integer number of system clock ticks (e.g. 1 x 2ns if system clock is 500MHz):
#define RGMII_DELAY 1
#define RGMII_DIVIDE_1G 3
#define RGMII_DELAY_100M 3

Note that some Ethernet PHY operate in “hybrid mode” and apply skew compensation
on incoming TX clock. You may need to adjust this compensation, disable it, or set the
above delay to 0 in the Ethernet MAC.

The Ethernet MAC will expect RX clock from PHY to xCORE be delayed by 1.2-2ns as
specified by RGMII.

The pins and functions are listed in Table 2. When the 10/100/1000 Mb/s Ethernet MAC
is instantiated these pins can no longer be used as GPIO pins, and will instead be driven
directly from a Double Data Rate RGMII block, which in turn is interfaced to a set of ports
on Tile 1. Table 5 describes the RGMII pins and signals:

11

lib_ethernet: Ethernet library

Table 5: RGMII pins and signals

Mandatory Pin Signal Name Description

X1D40 TX3 Transmit data bit 3
X1D41 TX2 Transmit data bit 2
X1D42 TX1 Transmit data bit 1
X1D43 TX0 Transmit data bit 0
X1D26 TX_CLK Transmit clock (2.5/25/125 MHz)
X1D27 TX_CTL Transmit data valid/error
X1D28 RX_CLK Receive clock (2.5/25/125 MHz)
X1D29 RX_CTL Receive data valid/error
X1D30 RX3 Receive data bit 3
X1D31 RX2 Receive data bit 2
X1D32 RX1 Receive data bit 1
X1D33 RX0 Receive data bit 0

The RGMII block is connected to the ports on Tile 1 as shown in RGMII port structure.
When the 10/100/1000 Mb/s Ethernet MAC is instantiated, the ports and IO pins shown
can only be used by the MAC component. Other IO pins and ports are unaffected.

Fig. 1: RGMII port structure

12

lib_ethernet: Ethernet library

7 Usage

7.1 10/100 Mb/s Ethernet MAC operation

There are two types of 10/100Mb/s EthernetMAC that are optimized for different feature
sets. Both connect to a standard 10/100Mb/s Ethernet PHY using the sameMII interface
described inMII: Media Independent Interface, or optionally an RMII interface for the real-
time MAC running on xcore.ai.

The resource-optimized MAC described here is provided for applications that do not re-
quire real-time features, such as those required by the Audio Video Bridging standards.
A simple webserver or low-bandwidth TCP traffic is a typical use for this MAC.

The same API is shared across all configurations of the Ethernet MACs. Additional API
calls are available in the configuration interface of the real-time MACs that will cause a
run-time assertion if called by the non-real-time configuration.

Ethernet MAC components are instantiated as parallel tasks that run in a par statement.
The application can connect via a transmit, receive and configuration interface connec-
tion using the ethernet_tx_if , ethernet_rx_if and The Ethernet MAC configuration interface
interface types, as shown in Fig. 2

Fig. 2: 10/100 Mb/s Ethernet MAC task diagram

For example, the following code instantiates a standard Ethernet MAC component using
MII and connects to it:
port p_eth_rxclk = XS1_PORT_1J;
port p_eth_rxd = XS1_PORT_4E;
port p_eth_txd = XS1_PORT_4F;
port p_eth_rxdv = XS1_PORT_1K;
port p_eth_txen = XS1_PORT_1L;
port p_eth_txclk = XS1_PORT_1I;
port p_eth_rxerr = XS1_PORT_1P;
port p_eth_timing = XS1_PORT_8C;
clock eth_rxclk = XS1_CLKBLK_1;
clock eth_txclk = XS1_CLKBLK_2;

int main()
{
ethernet_cfg_if i_cfg[1];
ethernet_rx_if i_rx[1];
ethernet_tx_if i_tx[1];
par {
mii_ethernet_mac(i_cfg, 1, i_rx, 1, i_tx, 1,

p_eth_rxclk, p_eth_rxerr, p_eth_rxd, p_eth_rxdv,
p_eth_txclk, p_eth_txen, p_eth_txd, p_eth_timing,
eth_rxclk, eth_txclk, 1600);

application(i_cfg[0], i_rx[0], i_tx[0]);
}
return 0;

}

Note that the connections are arrays of interfaces, so several tasks can connect to the
same component instance.

13

lib_ethernet: Ethernet library

The application can use the client end of the interface connections to perform Ethernet
MAC operations e.g.:
void application(client ethernet_cfg_if i_cfg,

client ethernet_rx_if i_rx,
client ethernet_tx_if i_tx)

{
ethernet_macaddr_filter_t macaddr_filter;
size_t index = i_rx.get_index();
for (int i = 0; i < MACADDR_NUM_BYTES; i++)
macaddr_filter.addr[i] = i;

i_cfg.add_macaddr_filter(index, 0, macaddr_filter);

while (1) {
select {
case i_rx.packet_ready():
uint8_t rxbuf[ETHERNET_MAX_PACKET_SIZE];
ethernet_packet_info_t packet_info;
i_rx.get_packet(packet_info, rxbuf, ETHERNET_MAX_PACKET_SIZE);
i_tx.send_packet(rxbuf, packet_info.len, ETHERNET_ALL_INTERFACES);
break;

}
}

}

14

lib_ethernet: Ethernet library

7.2 10/100 Mb/s real-time Ethernet MAC

The real-time 10/100 Mb/s Ethernet MAC supports additional features required to imple-
ment, for example, an AVB Talker and/or Listener endpoint, but has additional xCORE
resource requirements compared to the non-real-time MAC.

The real-time MAC may support the RMII interface described in RMII: Reduced Media
Independent Interface when targeting xcore.ai devices.

It is instantiated similarly to the non-real-time Ethernet MAC, with additional streaming
channels for sending and receiving high-priority Ethernet traffic, as shown in Fig. 3:

Fig. 3: 10/100 Mb/s real-time Ethernet MAC task diagram

For example, the following code instantiates a real-time Ethernet MAC component with
connected via MII high and low-priority interfaces and connects to it:
port p_eth_rxclk = XS1_PORT_1J;
port p_eth_rxd = XS1_PORT_4E;
port p_eth_txd = XS1_PORT_4F;
port p_eth_rxdv = XS1_PORT_1K;
port p_eth_txen = XS1_PORT_1L;
port p_eth_txclk = XS1_PORT_1I;
port p_eth_rxerr = XS1_PORT_1P;
clock eth_rxclk = XS1_CLKBLK_1;
clock eth_txclk = XS1_CLKBLK_2;

int main()
{
ethernet_cfg_if i_cfg[1];
ethernet_rx_if i_rx_lp[1];
ethernet_tx_if i_tx_lp[1];
streaming chan c_rx_hp;
streaming chan c_tx_hp;
par {

mii_ethernet_rt_mac(i_cfg, 1, i_rx_lp, 1, i_tx_lp, 1,
c_rx_hp, c_tx_hp, p_eth_rxclk, p_eth_rxerr,
p_eth_rxd, p_eth_rxdv, p_eth_txclk,
p_eth_txen, p_eth_txd, eth_rxclk, eth_txclk,
4000, 4000, ETHERNET_ENABLE_SHAPER);

application(i_cfg[0], i_rx_lp[0], i_tx_lp[0], c_rx_hp, c_tx_hp);
}

}

Similarly the RMII real-time MAC may be instantiated (four bit port version shown):
port p_eth_clk = XS1_PORT_1J;
port p_eth_txd = XS1_PORT_4B;
port p_eth_rxd = XS1_PORT_4A;
port p_eth_rxdv = XS1_PORT_1K;
port p_eth_txen = XS1_PORT_1L;
clock eth_rxclk = XS1_CLKBLK_1;
clock eth_txclk = XS1_CLKBLK_2;

int main()
{

(continues on next page)

15

lib_ethernet: Ethernet library

(continued from previous page)
ethernet_cfg_if i_cfg[1];
ethernet_rx_if i_rx_lp[1];
ethernet_tx_if i_tx_lp[1];
streaming chan c_rx_hp;
streaming chan c_tx_hp;
par {

rmii_ethernet_rt_mac(i_cfg, 1, i_rx_lp, 1, i_tx_lp, 1,
c_rx_hp, c_tx_hp,
p_eth_clk,
p_eth_rxd, NULL, USE_UPPER_2B,
p_eth_rxdv,
p_eth_txen,
p_eth_txd, NULL, USE_UPPER_2B,
eth_rxclk, eth_txclk,
port_timing,
4000, 4000, ETHERNET_ENABLE_SHAPER);

application(i_cfg[0], i_rx_lp[0], i_tx_lp[0], c_rx_hp, c_tx_hp);
}

}

The application can use the other end of the streaming channels to send and receive
high-priority traffic e.g.:
void application(client ethernet_cfg_if i_cfg,

client ethernet_rx_if i_rx,
client ethernet_tx_if i_tx,
streaming chanend c_rx_hp,
streaming chanend c_tx_hp)

{
ethernet_macaddr_filter_t macaddr_filter;
size_t index = i_rx.get_index();
for (int i = 0; i < MACADDR_NUM_BYTES; i++)
macaddr_filter.addr[i] = i;

i_cfg.add_macaddr_filter(index, 1, macaddr_filter);

while (1) {
uint8_t rxbuf[ETHERNET_MAX_PACKET_SIZE];
ethernet_packet_info_t packet_info;
select {
case ethernet_receive_hp_packet(c_rx_hp, rxbuf, packet_info):
ethernet_send_hp_packet(c_tx_hp, rxbuf, packet_info.len,

ETHERNET_ALL_INTERFACES);
break;

}
}

}

16

lib_ethernet: Ethernet library

7.3 10/100/1000 Mb/s real-time Ethernet MAC

The 10/100/1000 Mb/s Ethernet MAC supports the same feature set and API as the
10/100 Mb/s real-time MAC but with higher throughput and lower end-to-end latency.
The component connects to a Gigabit Ethernet PHY via an RGMII interface as described
in RGMII: Reduced Gigabit Media Independent Interface.

It is instantiated similarly to the real-time Ethernet MAC, with an additional combinable
task that allows the configuration interface to be sharedwith another slow interface such
as SMI/MDIO. It must be instantiated on Tile 1 and the user application run on Tile 0, as
shown in Fig. 4:

Fig. 4: 10/100/1000 Mb/s Ethernet MAC task diagram

For example, the following code instantiates a 10/100/1000Mb/s Ethernet MAC compo-
nent with high and low-priority interfaces and connects to it:
rgmii_ports_t rgmii_ports = on tile[1]: RGMII_PORTS_INITIALIZER;

int main()
{
ethernet_cfg_if i_cfg[1];
ethernet_rx_if i_rx_lp[1];
ethernet_tx_if i_tx_lp[1];
streaming chan c_rx_hp;
streaming chan c_tx_hp;
streaming chan c_rgmii_cfg;
par {

on tile[1]: rgmii_ethernet_mac(i_rx, 1, i_tx, 1,
c_rx_hp, c_tx_hp,
c_rgmii_cfg, rgmii_ports,
ETHERNET_ENABLE_SHAPER);

on tile[1]: rgmii_ethernet_mac_config(i_cfg, 1, c_rgmii_cfg);
on tile[0]: application(i_cfg[0], i_rx_lp[0], i_tx_lp[0], c_rx_hp, c_tx_hp);

}
}

17

lib_ethernet: Ethernet library

7.4 Raw MII interface

The raw MII interface implements a MII layer component with a basic buffering scheme
that is sharedwith the application. It provides a direct access to theMII pins as described
in MII: Media Independent Interface. It does not implement the buffering and filtering
required by a compliant Ethernet MAC layer, and defers this to the application.

The buffering of this task is shared with the application it is connected to. It sets up an
interrupt handler on the logical core the application is running on (via the init function
on the mii_if interface connection) and also consumes some of the MIPs on that core in
addition to the core Raw MII interface is running on (Fig. 5).

Fig. 5: MII task diagram

For example, the following code instantiates a MII component and connects to it:
port p_eth_rxclk = XS1_PORT_1J;
port p_eth_rxd = XS1_PORT_4E;
port p_eth_txd = XS1_PORT_4F;
port p_eth_rxdv = XS1_PORT_1K;
port p_eth_txen = XS1_PORT_1L;
port p_eth_txclk = XS1_PORT_1I;
port p_eth_rxerr = XS1_PORT_1P;
port p_eth_timing = XS1_PORT_8C;
clock eth_rxclk = XS1_CLKBLK_1;
clock eth_txclk = XS1_CLKBLK_2;

int main()
{
mii_if i_mii;
par {
mii(i_mii, p_eth_rxclk, p_eth_rxerr, p_eth_rxd, p_eth_rxdv,

p_eth_txclk, p_eth_txen, p_eth_txd, p_eth_timing,
eth_rxclk, eth_txclk, 4096);

application(i_mii);
}
return 0;

}

More information on interfaces and tasks can be be found in the XMOS Programming
Guide.

18

https://www.xmos.com/file/xmos-programming-guide
https://www.xmos.com/file/xmos-programming-guide

lib_ethernet: Ethernet library

7.5 SMI/MDIO interface

The SMI (Serial Management Interface) is used in Ethernet systems for themanagement
and configuration of PHY (physical layer) devices. It is part of the MDIO (Management
Data Input/Output) system defined by the IEEE 802.3 standard and provides a mecha-
nism for communication between a MAC (Media Access Control) layer and PHY devices
in an Ethernet system.

The MDIO interface consists of clock (MDC) and data (MDIO) signals. MDC is always
driven by the host whereas MDIO can be turned around so that it can read data from the
PHY.

The SMI task is marked as [[distributable]] which means, if it is called from the
same tile, does not occupy a hardware thread. Instead the call to the read_reg() or
write_reg() methods are treated as function calls which return when the last bit of
the SMI transaction is complete.

The interface uses two pins to communicate and there are two variants of the API pro-
vided, depending onwhether youwish to use two one bit ports or two bits of a wider port.
If you use two bits of a wider port, the remaining pins are not available for general use
and should either be left disconnected or weakly pulled down.

Note: The standard SMI/MDIO specification requires use of a pull-up resistor on MDIO
(typically 4.7 kOhm for a single PHY in a 3.3 V system). If using the single-port version
then it is necessary to also connect a pull-up to the MDC line (typically 4.7 kOhm for 3.3
V systems). The reason for this is that xcore ports have only a single direction bit. So in
order to sample the MDIO line with a known MDC state, an external resistor is required.

The speed of the interface is set conservatively at 1.66 MHz which supports slower PHY
SMI interfaces (eg. LAN8710A) that have a relatively slow time to data valid. This speed
is also chosen to support the single port version which has to sample read data at the
falling edge, effectively reducing the maximum bit clock by a factor of two. If faster
access is required and supported by the PHY, or the two port version is used, then it is
possible to adjust the following define in smi.xc up to a maximum of around 4 MHz for
xCORE-200 and 5 MHz for xcore.ai:
#define SMI_BIT_CLOCK_HZ 1660000

Increasing the bit clockmay require use of smaller pull-up resistor(s) depending on board
layout to ensure that the signal rise time is sufficient. If in doubt, either test operation
using lower the bit rate by setting a smaller SMI_BIT_CLOCK_HZ or check with an os-
cilloscope to ensure that the MDC and MDIO lines are fully reaching the logic high state.

19

lib_ethernet: Ethernet library

8 API

All Ethernet functions can be accessed via the ethernet.h header:
#include <ethernet.h>

Youwill also have to addlib_ethernet to theUSED_MODULES field of your application
Makefile.

8.1 Creating a 10/100 Mb/s Ethernet MAC instance

void mii_ethernet_mac(SERVER_INTERFACE(ethernet_cfg_if, i_cfg[n_cfg]),
static_const_unsigned_t n_cfg,
SERVER_INTERFACE(ethernet_rx_if, i_rx[n_rx]),
static_const_unsigned_t n_rx,
SERVER_INTERFACE(ethernet_tx_if, i_tx[n_tx]),
static_const_unsigned_t n_tx, in_port_t p_rxclk, in_port_t
p_rxer, in_port_t p_rxd, in_port_t p_rxdv, in_port_t p_txclk,
out_port_t p_txen, out_port_t p_txd, port p_timing, clock
rxclk, clock txclk, static_const_unsigned_t
rx_bufsize_words)

10/100 Mb/s Ethernet MAC component that connects to an MII interface.
This function implements a 10/100 Mb/s Ethernet MAC component connected to
an MII interface. Interaction to the component is via the connected configuration
and data interfaces.

Parameters

· i_cfg – Array of client configuration interfaces
· n_cfg – The number of configuration clients connected
· i_rx – Array of receive clients
· n_rx – The number of receive clients connected
· i_tx – Array of transmit clients
· n_tx – The number of transmit clients connected
· p_rxclk – MII RX clock port
· p_rxer – MII RX error port
· p_rxd – MII RX data port
· p_rxdv – MII RX data valid port
· p_txclk – MII TX clock port
· p_txen – MII TX enable port
· p_txd – MII TX data port
· p_timing – Internal timing port - this can be any xCORE port

that is not connected to any external device.
· rxclk – Clock used for MII receive timing
· txclk – Clock used for MII transmit timing
· rx_bufsize_words – The number of words to used for a re-

ceive buffer. This should be at least 1500 words.

20

lib_ethernet: Ethernet library

8.2 Creating a 10/100 Mb/s real-time Ethernet MAC instance

void mii_ethernet_rt_mac(SERVER_INTERFACE(ethernet_cfg_if, i_cfg[n_cfg]),
static_const_unsigned_t n_cfg,
SERVER_INTERFACE(ethernet_rx_if, i_rx_lp[n_rx_lp]),
static_const_unsigned_t n_rx_lp,
SERVER_INTERFACE(ethernet_tx_if, i_tx_lp[n_tx_lp]),
static_const_unsigned_t n_tx_lp,
nullable_streaming_chanend_t c_rx_hp,
nullable_streaming_chanend_t c_tx_hp, in_port_t
p_rxclk, in_port_t p_rxer, in_port_t p_rxd, in_port_t
p_rxdv, in_port_t p_txclk, out_port_t p_txen, out_port_t
p_txd, clock rxclk, clock txclk, static_const_unsigned_t
rx_bufsize_words, static_const_unsigned_t
tx_bufsize_words, enum ethernet_enable_shaper_t
shaper_enabled)

10/100 Mb/s real-time Ethernet MAC component to connect to an MII interface.
This function implements a 10/100 Mb/s Ethernet MAC component, connected to
an MII interface, with real-time features (priority queuing and traffic shaping). In-
teraction to the component is via the connected configuration and data interfaces.

Parameters

· i_cfg – Array of client configuration interfaces
· n_cfg – The number of configuration clients connected
· i_rx_lp – Array of low priority receive clients
· n_rx_lp – The number of low priority receive clients connected
· i_tx_lp – Array of low priority transmit clients
· n_tx_lp–The number of lowpriority transmit clients connected
· c_rx_hp – Streaming channel end for high priority receive data
· c_tx_hp – Streaming channel end for high priority transmit data
· p_rxclk – MII RX clock port
· p_rxer – MII RX error port
· p_rxd – MII RX data port
· p_rxdv – MII RX data valid port
· p_txclk – MII TX clock port
· p_txen – MII TX enable port
· p_txd – MII TX data port
· rxclk – Clock used for MII receive timing
· txclk – Clock used for MII transmit timing
· rx_bufsize_words – The number of words to used for a re-

ceive buffer. This should be at least 500 words.
· tx_bufsize_words–The number of words to used for a trans-

mit buffer. This should be at least 500 words.
· shaper_enabled – This should be

set to ETHERNET_ENABLE_SHAPER or
ETHERNET_DISABLE_SHAPER to either enable or disable
the 802.1Qav traffic shaper within the MAC.

21

lib_ethernet: Ethernet library

void rmii_ethernet_rt_mac(SERVER_INTERFACE(ethernet_cfg_if, i_cfg[n_cfg]),
static_const_unsigned_t n_cfg,
SERVER_INTERFACE(ethernet_rx_if, i_rx_lp[n_rx_lp]),
static_const_unsigned_t n_rx_lp,
SERVER_INTERFACE(ethernet_tx_if, i_tx_lp[n_tx_lp]),
static_const_unsigned_t n_tx_lp,
nullable_streaming_chanend_t c_rx_hp,
nullable_streaming_chanend_t c_tx_hp, in_port_t
p_clk, port p_rxd_0, NULLABLE_RESOURCE(port,
p_rxd_1), rmii_data_4b_pin_assignment_t rx_pin_map,
in_port_t p_rxdv, out_port_t p_txen, port p_txd_0,
NULLABLE_RESOURCE(port, p_txd_1),
rmii_data_4b_pin_assignment_t tx_pin_map, clock
rxclk, clock txclk, rmii_port_timing_t port_timing,
static_const_unsigned_t rx_bufsize_words,
static_const_unsigned_t tx_bufsize_words, enum
ethernet_enable_shaper_t shaper_enabled)

10/100 Mb/s real-time Ethernet MAC component to connect to an RMII interface.
This function implements a 10/100 Mb/s Ethernet MAC component, connected to
an RMII interface, with real-time features (priority queuing and traffic shaping). In-
teraction to the component is via the connected configuration and data interfaces.
Each of the 2 bit data ports may be defined either as half of a 4 bit port (upper or
lower 2 bits) or a pair of 1 bit ports.

Parameters

· i_cfg – Array of client configuration interfaces
· n_cfg – The number of configuration clients connected
· i_rx_lp – Array of low priority receive clients
· n_rx_lp – The number of low priority receive clients connected
· i_tx_lp – Array of low priority transmit clients
· n_tx_lp–The number of lowpriority transmit clients connected
· c_rx_hp – Streaming channel end for high priority receive data
· c_tx_hp – Streaming channel end for high priority transmit data
· p_clk – RMII clock input port
· p_rxd_0 – Port for data bit 0 (1 bit option) or entire port (4 bit

option)
· p_rxd_1 – Port for data bit 1 (1 bit option). Pass null if unused.
· rx_pin_map – Which pins to use in 4 bit case. USE_LOWER_2B

or USE_HIGHER_2B. Ignored if 1 bit ports used.
· p_rxdv – RMII RX data valid port
· p_txen – RMII TX enable port
· p_txd_0 – Port for data bit 0 (1 bit option) or entire port (4 bit

option)
· p_txd_1 – Port for data bit 1 (1 bit option). Pass null if unused.
· tx_pin_map – Which pins to use in 4 bit case. USE_LOWER_2B

or USE_HIGHER_2B. Ignored if 1 bit ports used.
· rxclk – Clock used for RMII receive timing
· txclk – Clock used for RMII transmit timing
· port_timing – Struct used for initialising the clock blocks to

ensure setup and hold times are met
· rx_bufsize_words – The number of words to used for a re-

ceive buffer. This should be at least 500 long words.
· tx_bufsize_words–The number of words to used for a trans-

mit buffer. This should be at least 500 long words.
· shaper_enabled – This should be

set to ETHERNET_ENABLE_SHAPER or

22

lib_ethernet: Ethernet library

ETHERNET_DISABLE_SHAPER to either enable or disable
the 802.1Qav traffic shaper within the MAC.

Real-time Ethernet MAC supporting typedefs

enum ethernet_enable_shaper_t
Enum representing a flag to enable or disable the 802.1Qav credit based traffic
shaper on the egress MAC port.
Values:

enumerator ETHERNET_DISABLE_SHAPER
Disable the credit based shaper

enumerator ETHERNET_ENABLE_SHAPER
Enable the credit based shaper

struct rmii_port_timing_t
Struct containing the clock delay settings for the Rx and Tx pins. This is needed
to adjust port timings to ensure that the data is captured with sufficient setup and
holdmargin. This is required due to the relatively fast 50MHz clock. Please consult
the documentation for further details and suggested settings.

enum rmii_data_4b_pin_assignment_t
ENUM to determine which two bits of a four bit port are to be used as data lines in
the case that a four bit port is specified for RMII. The other two pins of the four bit
port cannot be used. For Rx the unused input bits are ignored. For Tx, the unused
pins are always driven low.
Values:

enumerator USE_LOWER_2B
Use bit 0 and bit 1 of the four bit port for data bits 0 and 1

enumerator USE_UPPER_2B
Use bit 2 and bit 3 of the four bit port for data bits 0 and 1

23

lib_ethernet: Ethernet library

8.3 Creating a 10/100/1000 Mb/s Ethernet MAC instance

struct rgmii_ports_t
Structure representing the port and clock resources required by RGMII
A macro to initialize this structure is provided:

rgmii_ports_t rgmii_ports = on tile[1]: RGMII_PORTS_INITIALIZER;

void rgmii_ethernet_mac(SERVER_INTERFACE(ethernet_rx_if, i_rx_lp[n_rx_lp]),
static_const_unsigned_t n_rx_lp,
SERVER_INTERFACE(ethernet_tx_if, i_tx_lp[n_tx_lp]),
static_const_unsigned_t n_tx_lp,
nullable_streaming_chanend_t c_rx_hp,
nullable_streaming_chanend_t c_tx_hp,
streaming_chanend_t c_rgmii_cfg,
REFERENCE_PARAM(rgmii_ports_t, rgmii_ports), enum
ethernet_enable_shaper_t shaper_enabled)

10/100/1000 Mb/s Ethernet MAC component to connect to an RGMII interface.
This function implements a 10/100/1000 Mb/s Ethernet MAC component, con-
nected to an RGMII interface, with real-time features. Interaction to the component
is via the connected configuration and data interfaces.

Parameters

· i_rx_lp – Array of low priority receive clients
· n_rx_lp – The number of low priority receive clients connected
· i_tx_lp – Array of low priority transmit clients
· n_tx_lp–The number of lowpriority transmit clients connected
· c_rx_hp – Streaming channel end for high priority receive data
· c_tx_hp – Streaming channel end for high priority transmit data
· c_rgmii_cfg – A streaming channel end connected to

rgmii_ethernet_mac_config()
· rgmii_ports – A rgmii_ports_t structure initialized with the

RGMII_PORTS_INITIALIZER macro
· shaper_enabled – This should be

set to ETHERNET_ENABLE_SHAPER or
ETHERNET_DISABLE_SHAPER to either enable or disable
the 802.1Qav traffic shaper within the MAC.

void rgmii_ethernet_mac_config(SERVER_INTERFACE(ethernet_cfg_if, i_cfg[n]),
unsigned n, streaming_chanend_t
c_rgmii_cfg)

RGMII Ethernet MAC configuration task
This function implements the server side of the ethernet_cfg_if interface and
communicates internally with the RGMII Ethernet MAC via a streaming channel
end.
The function can be combined with SMI from within the top level par.

Parameters

· i_cfg – Array of client configuration interfaces
· n – The number of configuration clients connected
· c_rgmii_cfg – A streaming channel end connected to

rgmii_ethernet_mac()

24

lib_ethernet: Ethernet library

8.4 The Ethernet MAC configuration interface

group ethernet_config_if
Ethernet MAC configuration interface.
This interface allows clients to configure the Ethernet MAC.

Functions

void set_macaddr(size_t ifnum, const uint8_t
mac_address[MACADDR_NUM_BYTES])

Set the source MAC address of the Ethernet MAC
Parameters

· ifnum – The index of the MAC interface to set
· mac_address – The six-octet MAC address to set Warn-

ing: The mac address set through this function is not
used anywhere in the MAC other than for later retrieval by
get_macaddr(). The client is expected to create the full packet
including src and dest mac address for transmission. For
setting a mac address filter when receiving packets, use
add_macaddr_filter

void get_macaddr(size_t ifnum, uint8_t
mac_address[MACADDR_NUM_BYTES])

Gets the source MAC address of the Ethernet MAC
Parameters

· ifnum – The index of the MAC interface to get
· mac_address – The six-octet MAC address of this interface

void set_link_state(int ifnum, ethernet_link_state_t new_state,
ethernet_speed_t speed)

Set the current link state.
This function sets the current link state and speed of the PHY to the MAC.

Parameters

· ifnum – The index of the MAC interface to set
· new_state – The new link state for the port.
· speed – The active link speed and duplex of the PHY.

void get_link_state(int ifnum, REFERENCE_PARAM(unsigned, link_state),
REFERENCE_PARAM(unsigned, link_speed))

Get the current link state.
This function Gets the current link state and speed of the PHY to the MAC.

Parameters

· ifnum – The index of the MAC interface to ge the link state
for

Returns
Ethernet link state and speed

ethernet_macaddr_filter_result_t add_macaddr_filter(size_t client_num, int
is_hp, ether-
net_macaddr_filter_t
entry)

25

lib_ethernet: Ethernet library

AddMACaddresses to the filter. Only packetswith the specifiedMACaddress
will be forwarded to the client.

Parameters

· client_num – The index into the set of RX clients. Can be
acquired by calling the get_index() method.

· is_hp – Indicates whether the RX client is high priority. There
is only one high priority client, so client_num must be 0 when
is_hp is set. High priority queuing is only available in the 10/100
Mb/s real-time and 10/100/1000 Mb/s MACs.

· entry – The filter entry to add.
Returns

ETHERNET_MACADDR_FILTER_SUCCESS when the entry is
added or ETHERNET_MACADDR_FILTER_TABLE_FULL on fail-
ure.

void del_macaddr_filter(size_t client_num, int is_hp,
ethernet_macaddr_filter_t entry)

Delete MAC addresses from the filter.
Parameters

· client_num – The index into the set of RX clients. Can be
acquired by calling the get_index() method.

· is_hp – Indicates whether the RX client is high priority. There
is only one high priority client, so client_num must be 0 when
is_hp is set. High priority queueing is only available in the
10/100 Mb/s real-time and 10/100/1000 Mb/s MACs.

· entry – The filter entry to delete.
void del_all_macaddr_filters(size_t client_num, int is_hp)

Delete all MAC addresses from the filter registered for this client.
Parameters

· client_num – The index into the set of RX clients. Can be
acquired by calling the get_index() method.

· is_hp – Indicates whether the RX client is high priority. There
is only one high priority client, so client_num must be 0 when
is_hp is set. High priority queuing is only available in the 10/100
Mb/s real-time and 10/100/1000 Mb/s MACs.

void add_ethertype_filter(size_t client_num, uint16_t ethertype)
Add an Ethertype to the filter. This filter is applied after the MAC address filter
and only if it is successful. Only packets with the specified Ethertypes will be
forwarded to the client. A maximum of 2 Ethertype filters can be applied per
client.

Parameters

· client_num – The index into the set of RX clients. Can be
acquired by calling the get_index() method.

· ethertype – A two-octet Ethertype value to filter.
void del_ethertype_filter(size_t client_num, uint16_t ethertype)

Delete an Ethertype from the filter
Parameters

· client_num – The index into the set of RX clients. Can be
acquired by calling the get_index() method.

· ethertype–A two-octet Ethertype value to delete fromfilter.

26

lib_ethernet: Ethernet library

void get_tile_id_and_timer_value(REFERENCE_PARAM(unsigned,
tile_id),
REFERENCE_PARAM(unsigned,
time_on_tile))

Get the tile ID that the Ethernet MAC is running on and the current timer value
on that tile. This function is only available in the 10/100 Mb/s real-time and
10/100/1000 Mb/s MACs.

Parameters

· tile_id – The tile ID returned from the Ethernet MAC
· time_on_tile – The current timer value from the Ethernet

MAC
void set_egress_qav_idle_slope(size_t ifnum, unsigned slope)

Set the high-priority TX queue’s credit based shaper idle slope value. See also
set_egress_qav_idle_slope_bps() where the argument is bits per second. This
function is only available in the 10/100 Mb/s real-time and 10/100/1000 Mb/s
MACs.

Parameters

· ifnum – The index of the MAC interface to set the slope (al-
ways 0)

· slope – The slope value in bits per 100 MHz ref timer tick in
MII_CREDIT_FRACTIONAL_BITS Q format.

void set_egress_qav_idle_slope_bps(size_t ifnum, unsigned
bits_per_second)

Set the high-priority TX queue’s credit based shaper idle slope in bits per
second. This function is only available in the 10/100 Mb/s real-time and
10/100/1000 Mb/s MACs.

Parameters

· ifnum – The index of the MAC interface to set the slope (al-
ways 0)

· slope – The maximum number of bits per second to be set
void set_egress_qav_credit_limit(size_t ifnum, int payload_limit_bytes)

Sets the the high-priority TX queue’s Qav credit limit in units of frame size
bytes

Parameters

· ifnum – The index of the MAC interface to set the slope (al-
ways 0)

· limit_bytes – The credit limit in units of payload size in
bytes to set as a credit limit, not including preamble, CRC and
IFG. Set to 0 for no limit (default)

void set_ingress_timestamp_latency(size_t ifnum, ethernet_speed_t
speed, unsigned value)

Set the ingress latency to correct for the offset between the timestamp mea-
surement plane relative to the reference plane. See 802.1AS 8.4.3.
This latency can change at different PHY speeds, thus requires a latency value
to be set for each speed in the ethernet_speed_t enum.
All ingress timestamps received by the client will be corrected with the set
value. The latency is initialized to 0 for all speeds.
This function is only available in the 10/100 Mb/s real-time and 10/100/1000
Mb/s MACs.

27

lib_ethernet: Ethernet library

Parameters

· ifnum – The index of the MAC interface to set the latency
· speed – The speed to set the latency for
· value – The latency value in nanoseconds

void set_egress_timestamp_latency(size_t ifnum, ethernet_speed_t
speed, unsigned value)

Set the egress latency to correct for the offset between the timestamp mea-
surement plane relative to the reference plane. See 802.1AS 8.4.3.
This latency can change at different PHY speeds, thus requires a latency value
to be set for each speed in the ethernet_speed_t enum.
All egress timestamps received by the client will be corrected with the set
value. The latency is initialized to 0 for all speeds.
This function is only available in the 10/100 Mb/s real-time and 10/100/1000
Mb/s MACs.

Parameters

· ifnum – The index of the MAC interface to set the latency
· speed – The speed to set the latency for
· value – The latency value in nanoseconds

void enable_strip_vlan_tag(size_t client_num)
Enable stripping of any VLAN tags on packets delivered to this client. This
feature is available on the real-time 100 Mbps Ethernet MAC only.

Parameters

· client_num – The index into the set of RX clients. Can be
acquired by calling the get_index() method.

void disable_strip_vlan_tag(size_t client_num)
Disable stripping of any VLAN tags on packets delivered to this client. This
feature is available on the real-time 100 Mbps Ethernet MAC only.

Parameters

· client_num – The index into the set of RX clients. Can be
acquired by calling the get_index() method.

void enable_link_status_notification(size_t client_num)
Enable notifications of link status changes. These will be sent over the RX
interface using ETH_IF_STATUS packets.

Parameters

· client_num – The index into the set of RX clients. Can be
acquired by calling the get_index() method.

void disable_link_status_notification(size_t client_num)
Disable notifications of link status changes.

Parameters

· client_num – The index into the set of RX clients. Can be
acquired by calling the get_index() method.

void exit(void)
Exit ethernet MAC. Quits all of the associated sub tasks and frees memory.
Allows the resources previously used by theMAC to be re-used by other tasks.
Only supported on RMII real-time MACs. This command is ignored for other
ethernet MACs.

28

lib_ethernet: Ethernet library

enum ethernet_link_state_t
Type representing link events.
Values:

enumerator ETHERNET_LINK_DOWN
Ethernet link down event.

enumerator ETHERNET_LINK_UP
Ethernet link up event.

enum ethernet_speed_t
Type representing the PHY link speed and duplex
Values:

enumerator LINK_10_MBPS_FULL_DUPLEX
10 Mbps full duplex

enumerator LINK_100_MBPS_FULL_DUPLEX
100 Mbps full duplex

enumerator LINK_1000_MBPS_FULL_DUPLEX
1000 Mbps full duplex

enumerator NUM_ETHERNET_SPEEDS
Count of speeds in this enum

struct ethernet_macaddr_filter_t
Structure representing MAC address filter data that is registered with the Ethernet
MAC

enum ethernet_macaddr_filter_result_t
Type representing the result of adding a filter entry to the Ethernet MAC
Values:

enumerator ETHERNET_MACADDR_FILTER_SUCCESS
The filter entry was added successfully

enumerator ETHERNET_MACADDR_FILTER_TABLE_FULL
The filter entry was not added because the filter table is full

29

lib_ethernet: Ethernet library

8.5 The Ethernet MAC data handling interface

group ethernet_tx_if
Ethernet MAC data transmit interface
This interface allows clients to send packets to the Ethernet MAC for transmission

Functions

void _init_send_packet(size_t n, size_t ifnum)
Internal API call. Do not use.

void _complete_send_packet(char packet[n], unsigned n, int
request_timestamp, size_t ifnum)

Internal API call. Do not use.
unsigned _get_outgoing_timestamp()

Internal API call. Do not use.
inline void send_packet(CLIENT_INTERFACE(ethernet_tx_if, i), char packet[n],

unsigned n, unsigned ifnum)
Function to send an Ethernet packet on the specified interface.
The call will block until a transmit buffer is available and the packet has been
copied to the Ethernet MAC.

Parameters

· packet–A byte-array containing the Ethernet packet to send.
Must include a valid Ethernet frame header.

· n – The number of bytes in the packet array to send
· ifnum – The index of the MAC interface to send the packet

Use the ETHERNET_ALL_INTERFACES define to send to all
interfaces.

inline unsigned send_timed_packet(CLIENT_INTERFACE(ethernet_tx_if, i),
char packet[n], unsigned n, unsigned
ifnum)

Function to send an Ethernet packet on the specified interface and return a
timestamp when the packet was sent by the MAC.
The call will block until the packet has been sent and the egress timestamp
retrieved.

Parameters

· packet–A byte-array containing the Ethernet packet to send.
Must include a valid Ethernet frame header.

· n – The number of bytes in the packet array to send
· ifnum – The index of the MAC interface to send the packet

Use the ETHERNET_ALL_INTERFACES define to send to all
interfaces.

Returns
A 32-bit timestamp off a 100 MHz reference clock that repre-
sents the egress time. May be corrected for egress latency, see
set_egress_timestamp_latency() on the ethernet_cfg_if in-
terface.

group ethernet_rx_if

30

lib_ethernet: Ethernet library

Functions

size_t get_index()
Get the index of a given receiver client

void packet_ready()
Packet ready notification.
This notification will fire when a packet has been queued for this client and is
ready to be received using get_packet().
The event can be selected upon e.g.:
select {
case i_eth_rx.packet_ready():
... // Get and handle the packet

break;
}

void get_packet(REFERENCE_PARAM(ethernet_packet_info_t, desc), char
packet[n], unsigned n)

Function to receive an Ethernet packet or status/control data from the MAC.
Should be called after a packet_ready() notification.

Parameters

· desc – A descriptor containing metadata about the packet
contents.

· packet – A byte-array containing the packet data.
· n – The number of bytes to receive. The data array must be

large enough to receive the number of bytes specified.

enum eth_packet_type_t
Type representing the type of packet from the MAC
Values:

enumerator ETH_DATA
A packet containing data.

enumerator ETH_IF_STATUS
A control packet containing interface status information

enumerator ETH_OUTGOING_TIMESTAMP_INFO
A control packet containing an outgoing timestamp

enumerator ETH_NO_DATA
A packet containing no data.

struct ethernet_packet_info_t
Structure representing a received data or control packet from the Ethernet MAC

31

lib_ethernet: Ethernet library

8.6 The Ethernet MAC high-priority data handling interface

inline void ethernet_send_hp_packet(streaming_chanend_t c_tx_hp, char
packet[n], unsigned n, unsigned ifnum)

Function to send a priority-queued packet over a high priority channel from the
10/100 Mb/s real-time MAC.

Parameters

· c_tx_hp – A streaming channel end connected to the MAC.
· packet – A byte-array containing the Ethernet packet to send.

Must include a valid Ethernet frame header.
· n – The number of bytes in the packet array to send
· ifnum – The index of the MAC interface to send the packet

Use the ETHERNET_ALL_INTERFACES define to send to all in-
terfaces.

inline void ethernet_receive_hp_packet(streaming_chanend_t c_rx_hp, char
packet[], REFER-
ENCE_PARAM(ethernet_packet_info_t,
packet_info))

Function to receive a priority-queued packet over a high priority channel from the
10/100 Mb/s real-time MAC.
The packet can be split into two transactions due to internal buffering and therefore
this function must be used to receive the packet.

Parameters

· c_rx_hp – A streaming channel end connected to the MAC.
· packet – A byte-array containing the packet data.
· packet_info – A descriptor containing metadata about the

packet contents.

32

lib_ethernet: Ethernet library

8.7 Creating a raw MII instance

All raw MII functions can be accessed via the mii.h header:
#include <mii.h>

void mii(SERVER_INTERFACE(mii_if, i_mii), in_port_t p_rxclk, in_port_t p_rxer, in_port_t
p_rxd, in_port_t p_rxdv, in_port_t p_txclk, out_port_t p_txen, out_port_t p_txd,
port p_timing, clock rxclk, clock txclk, static_const_unsigned_t
rx_bufsize_words)

Raw MII component.
This function implements a MII layer component with a basic buffering scheme
that is shared with the application. It provides a direct access to the MII pins. It
does not implement the buffering and filtering required by a compliant Ethernet
MAC layer, and defers this to the application.
The buffering of this task is shared with the application it is connected to. It sets up
an interrupt handler on the logical core the application is running on via the init
function on the mii_if interface connection) and also consumes some of the
MIPs on that core in addition to the core mii is running on.

Parameters

· i_mii – The MII interface to connect to the application.
· p_rxclk – MII RX clock port
· p_rxer – MII RX error port
· p_rxd – MII RX data port
· p_rxdv – MII RX data valid port
· p_txclk – MII TX clock port
· p_txen – MII TX enable port
· p_txd – MII TX data port
· p_timing – Internal timing port - this can be any xCORE port

that is not connected to any external device.
· rxclk – Clock used for MII receive timing
· txclk – Clock used for MII transmit timing
· rx_bufsize_words – The number of words to used for a re-

ceive buffer. This should be at least 1500 words.

8.8 The MII interface

group mii_if
Interface allowing access to the MII packet layer.

Functions

mii_info_t init()
Initialize the MII layer
This function initializes the MII layer. In doing so it will setup an interrupt han-
dler on the current logical core that calls the function (so tasks on that core
may be interrupted and can no longer rely on the deterministic runtime of the
xCORE).

Returns
state structure to use in subsequent calls to send/receive pack-
ets.

void release_packet(int *data)
Get incoming packet from MII layer.

33

lib_ethernet: Ethernet library

This function can be called after an event is triggered by the
mii_incoming_packet() function. It gets the next incoming packet from
the packet buffer of the MII layer.

This function will release a packet back to the MII layer to be used for buffer-
ing.

Returns
a tuple containing a pointer to the data (which is owned by the ap-
plication until the release_packet() function is called), the number
of bytes in the packet and a timestamp. If no packet is available
then the first element will be a NULL pointer. Release a packet
back to the MII layer.

Parameters

· data – The pointer to packet to return. This should be the
same pointer returned by get_incoming_packet()

void send_packet(int *buf, size_t n)
Send a packet to the MII layer.
This function will send a packet over MII. It does not block and will return
immediately with the MII layer now owning the memory of the packet. The
function mii_packet_sent() should be subsequently called to determine when
the packet has been transmitted and the application can use the buffer again.

Parameters

· buf – The pointer to the packet to be transferred to the MII
layer.

· n – The number of bytes in the packet to send.

void mii_incoming_packet(mii_info_t info)
Event on/wait for an incoming packet.
This function waits for an incoming packet from the MII layer. It can be used in a
select to detect an incoming packet e.g

mii_info_t mii_info = i_mii.init();
select {
case mii_incoming_packet(mii_info):

...
break;

...

void mii_packet_sent(mii_info_t info)
Event on/wait for a packet send to complete.
This function will wait for a packet transmitted with the send_packet function on
the mii_interface to complete. It can be used in a select to event when the trans-
mission is complete e.g

mii_info_t mii_info = i_mii.init();
select {
case mii_packet_sent(mii_info):

...
break;

...

typedef struct mii_lite_data_t *mii_info_t

34

lib_ethernet: Ethernet library

8.9 Creating an SMI/MDIO instance

All SMI functions can be accessed via the smi.h header:
#include <smi.h>

void smi(SERVER_INTERFACE(smi_if, i_smi), port p_mdio, port p_mdc)
SMI component that connects to an Ethernet PHY or switch via MDIO on separate
ports.
This function implements a SMI component that connects to an Ethernet PHY/
switch via MDIO/MDC connected on separate ports. Interaction to the component
is via the connected SMI interface.

Parameters

· i_smi – Client register read/write interface
· p_mdio – SMI MDIO port
· p_mdc – SMI MDC port

void smi_singleport(SERVER_INTERFACE(smi_if, i_smi), port p_smi, unsigned
mdio_bit, unsigned mdc_bit)

SMI component that connects to an Ethernet PHY or switch via MDIO on a shared
multi-bit port.
Important!! This version requires a pull-up resistor on MDC to function.
This function implements a SMI component that connects to an Ethernet PHY/
switch via MDIO/MDC connected on the same multi-bit port. Interaction to the
component is via the connected SMI interface. Unsed pins in the port are reserved
and should be left unconnected or weakly pulled down.

Parameters

· i_smi – Client register read/write interface
· p_smi – The multi-bit port with MDIO/MDC pins
· mdio_bit – The MDIO bit position on the multi-bit port
· mdc_bit – The MDC bit position on the multi-bit port

35

lib_ethernet: Ethernet library

8.10 The SMI/MDIO PHY interface

group smi_if
SMI register configuration interface.
This interface allows clients to read or write the PHY SMI registers

Functions

uint16_t read_reg(uint8_t phy_address, uint8_t reg_address)
Read the specified SMI register in the PHY

Parameters

· phy_address – The 5-bit SMI address of the PHY
· reg_address – The 5-bit register address to read

Returns
The 16-bit data value read from the register

void write_reg(uint8_t phy_address, uint8_t reg_address, uint16_t val)
Write the specified SMI register in the PHY

Parameters

· phy_address – The 5-bit SMI address of the PHY
· reg_address – The 5-bit register address to write
· val – The 16-bit data value to write to the register

36

lib_ethernet: Ethernet library

8.11 SMI PHY configuration helper functions

void smi_configure(CLIENT_INTERFACE(smi_if, smi), uint8_t phy_address,
ethernet_speed_t speed_mbps, smi_autoneg_t auto_neg)

Function to configure the PHY speed/duplex with or without auto negotiation. The
smi_phy_is_powered_down() function should be called to check that the PHY is not
powered down before calling this function.

Parameters

· smi – An interface connection to the SMI component
· phy_address – The 5-bit SMI address of the PHY
· speed_mbps – If auto negotiation is disabled, the specified

speed will be forced, otherwise the PHY will be configured to ad-
vertise as capable of all full-duplex speeds up to and including the
specified speed.

· auto_neg – If set to SMI_ENABLE_AUTONEG auto negotiation
is enabled, otherwise disabled if set to SMI_DISABLE_AUTONEG

enum smi_autoneg_t
Type representing PHY auto negotiation enable/disable flags
Values:

enumerator SMI_DISABLE_AUTONEG
Enable auto negotiation

enumerator SMI_ENABLE_AUTONEG
Disable auto negotiation

void smi_set_loopback_mode(CLIENT_INTERFACE(smi_if, smi), uint8_t
phy_address, int enable)

Function to enable loopback mode with the Ethernet PHY.

Parameters

· smi – An interface connection to the SMI component
· phy_address – The 5-bit SMI address of the PHY
· enable – Loopback enable flag. If set to 1, loopback is enabled,

otherwise 0 to disable

unsigned smi_get_id(CLIENT_INTERFACE(smi_if, smi), uint8_t phy_address)
Function to retrieve the PHY manufacturer ID number.

Parameters

· smi – An interface connection to the SMI component
· phy_address – The 5-bit SMI address of the PHY

Returns
The PHY manufacturer ID number

unsigned smi_phy_is_powered_down(CLIENT_INTERFACE(smi_if, smi), uint8_t
phy_address)

Function to retrieve the power down status of the PHY.

Parameters

37

lib_ethernet: Ethernet library

· smi – An interface connection to the SMI component
· phy_address – The 5-bit SMI address of the PHY

Returns
1 if the PHY is powered down, 0 otherwise

ethernet_link_state_t smi_get_link_state(CLIENT_INTERFACE(smi_if, smi), uint8_t
phy_address)

Function to retrieve the link up/down status.

Parameters

· smi – An interface connection to the SMI component
· phy_address – The 5-bit SMI address of the PHY

Returns
ETHERNET_LINK_UP if the link is up, ETHERNET_LINK_DOWN if the
link is down

Copyright © 2025, All Rights Reserved.

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the ”Information”) and is providing
it to you ”AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS
Ltd makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United Kingdom and
other countries and may not be used without written permission. Company and product names mentioned in this
document are the trademarks or registered trademarks of their respective owners.

38

	Introduction
	Usage
	Typical resource usage
	Standard MAC Features
	Feature Overview
	Receive Filter

	Real-Time MAC Features
	Hardware Time Stamping
	High Priority Queues
	Credit Based Shaper
	VLAN Tag Stripping

	External signal description
	MII: Media Independent Interface
	RMII: Reduced Media Independent Interface
	RGMII: Reduced Gigabit Media Independent Interface

	Usage
	10/100 Mb/s Ethernet MAC operation
	10/100 Mb/s real-time Ethernet MAC
	10/100/1000 Mb/s real-time Ethernet MAC
	Raw MII interface
	SMI/MDIO interface

	API
	Creating a 10/100 Mb/s Ethernet MAC instance
	Creating a 10/100 Mb/s real-time Ethernet MAC instance
	Creating a 10/100/1000 Mb/s Ethernet MAC instance
	The Ethernet MAC configuration interface
	The Ethernet MAC data handling interface
	The Ethernet MAC high-priority data handling interface
	Creating a raw MII instance
	The MII interface
	Creating an SMI/MDIO instance
	The SMI/MDIO PHY interface
	SMI PHY configuration helper functions

